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ABSTRACT
Trusted execution environments (TEEs) have been proposed
to protect GPU computation for machine learning applications
operating on sensitive data. However, existing GPU TEE solu-
tions either require CPU and/or GPU hardware modification
to realize TEEs for GPUs, which prevents current systems
from adopting them, or rely on untrusted system software
such as GPU device drivers. In this paper, we propose using
CPU secure enclaves, e.g., Intel SGX, to build GPU TEEs
without modifications to existing hardware. To tackle the fun-
damental limitations of these enclaves, such as no support
for I/O operations, we design and develop GEVISOR, a for-
mally verified security reference monitor software to enable a
trusted I/O path between enclaves and GPU without trusting
the GPU device driver. GEVISOR operates in the Virtual Ma-
chine Extension (VMX) root mode, monitors the host system
software to prevent unauthorized access to the GPU code and
data outside the enclave, and isolates the enclave GPU context
from other contexts during GPU computation. We implement
and evaluate GEVISOR on a commodity machine with an In-
tel SGX CPU and an NVIDIA Pascal GPU. Our experimental
results show that our approach maintains an average overhead
of 13.1% for deep learning and 18% for GPU benchmarks
compared to native GPU computation while providing GPU
TEEs for existing CPU and GPU hardware.

CCS CONCEPTS
• Security and privacy → Virtualization and security.

KEYWORDS
Confidential Computing, GPU, TEE

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SoCC ’23, October 30–November 1, 2023, San Cruz, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to
ACM.
ACM ISBN 979-8-4007-0387-4/23/11. . . $15.00
https://doi.org/10.1145/3620678.3624659

1 INTRODUCTION
Graphics processing units (GPUs) have been a popular solu-
tion to accelerate computation in applications, such as data
analytics, machine learning, and deep learning in the current
cloud computing environment. As a result, the associated
GPU security implications have drawn more attention due to
the sensitivity of the data that GPUs operate on. An attacker
can exploit vulnerabilities at the OS level to gain control of
the GPU driver and then access sensitive data within a GPU
through the Memory-mapped I/O (MMIO) and Direct Mem-
ory Access (DMA) interfaces [41]. In addition, a malicious
user can break context isolation between GPU applications
running on the same GPU by tampering with the GPU page
table, leaking the sensitive data processed from within victim
GPU applications [54].

In light of this problem, Trusted execution environments
(TEEs) for GPUs have recently been proposed and adapted to
isolate and secure GPU computation through CPU modifica-
tion [27], GPU modification [51], and customized hardware
TEE [56]. For instance, the latest NVIDIA’s Hopper H100
architecture [6] and Microsoft’s confidential computing cloud
with NVIDIA A100 [5] provide TEEs within GPUs. However,
all these solutions require hardware changes within the CPU
and/or GPU, which prevents current systems from adopting
them. Moreover, silicon scaling is slowing [47]. Any security
flaw found within these hardware GPU TEE implementations
is likely to stay there forever until a new GPU product is
released.

On the contrary, it is possible to build a GPU TEE with only
software changes. StrongBox [20] uses ARM TrustZone to
build a GPU TEE by assigning the GPU to the secure world
and preventing accesses from the non-secure world using
the TrustZone Address Space Controller (TZASC) during a
secure GPU computation. While StrongBox solves the GPU
TEE problem for edge devices, it cannot be applied to the
cloud environment because of the dominance of Intel CPUs.
Another work [55] migrates the GPU device driver from the
kernel space into the trusted computing base (TCB) in the
user space and isolates the channel between the driver and
device using a hypervisor. Unfortunately, such an approach
increases the TCB size significantly as the size of a GPU
driver tends to be large (e.g., 1.79 million lines of code (LoC)
as of Linux 5.9 for AMD GPUs, and 209K LoC for an open-
sourced NVIDIA GPU driver (nouveau)). In addition, moving
a GPU device driver from the kernel space to the user space
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could be infeasible at all since most commodity GPU drivers
are proprietary, e.g., NVIDIA GPU drivers.

Aiming at no hardware changes for practical deployment
and reducing the TCB, in this paper, we propose using CPU se-
cure enclaves, e.g., Intel SGX, to build a GPU TEE, consider-
ing the strong security guarantees provided by SGX enclaves.
However, this approach immediately faces multiple critical
challenges as follows. 1 Unlike ARM TrustZone, Intel SGX
was never designed to support I/O operations. There is no
trusted I/O path between enclaves and GPU by default without
trusting the OS. 2 A GPU device driver is needed for GPU
computation but can easily bloat up the TCB. Then the ques-
tion is how to exclude the GPU device driver from the TCB.
3 Balance between security guarantees and performance
overhead. Cryptographic primitives are usually the building
block for secure I/O path between enclave and GPU [27, 51],
however, they often incur high performance overhead. Mean-
while, this kind of design requires a special CUDA kernel
transfer first for key exchange. How could a user securely
transferring the CUDA kernel with a trusted-path without
using that trusted path to transfer data? 4 Without rigorous
security verification, a security solution may introduce a new
attack surface. A new GPU TEE solution might still suffer
from typical memory safety issues and/or incomplete protec-
tions, breaking the security guarantees provided by TEE.

In this paper, we address these challenges by designing a
formally-verified tiny hypervisor, GPU Enclave hyperVisor
(GEVISOR) running in the VMX root mode and cooperating
with SGX enclaves to enable confidential GPU computation
as follows.
Trusted I/O. GEVISOR leverages the GPU runtime within
the enclave to cooperate with the hypervisor to protect GPU
I/O memory region during data transfer. GEVISOR confines
the GPU I/O access and ensures that only the corresponding
enclave can access it during its life cycle using the extended
page table (EPT).
Small TCB. GEVISOR removes the GPU device driver from
the TCB by isolating the channel between enclaves and the
GPU from other system software in the address space and
monitoring the execution of the enclaves to securely autho-
rize GPU device access without the driver. To further reduce
the TCB, GEVISOR excludes the system bootstrap code and
supports dynamic hypervisor measured launch leveraging the
Dynamic Root of Trust for Measurement (DRTM) [40] with
a Trusted Platform Module (TPM) and SGX combined linear
remote attestation.
Low Overhead. To avoid the data encryption overhead,
GEVISOR provides a unified GPU I/O protection (i.e., MMIO
and DMA) by monitoring the DMA memory region for data
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Figure 1: GPU software and hardware components.

transferring between an enclave and a GPU. This design al-
lows GEVISOR to trade the strong but expensive I/O chan-
nel encryption with a weaker but performant EPT-based pro-
tection. We further design a novel asynchronous hypercall
mechanism dedicated for I/O protections to minimize context
switches to and from GEVISOR.
Formal Verification. We formally verify the security guaran-
tees of both the design specification and the implementation
of GEVISOR using Dafny [33] and CBMC [18] respectively.
We propose I/O dualization semantic verification by applying
noninterference [22] on I/O protection verification.

The contributions of this paper are as follows.
• We propose building a GPU TEE using CPU secure en-

claves with a tiny hypervisor (GEVISOR) that cooperates
with GPU enclaves to realize TEE for commodity GPUs
without any hardware changes (§5).

• We design a novel asynchronous hypercall mechanism to
reduce the context switch overhead (§5.2), a linear remote
attestation protocol combining TPM and SGX remote attes-
tations (§5.4), and a unified MMIO and DMA protection
solution to enable a trusted I/O path between enclaves and
GPU (§6).

• We formally verify the security properties of GEVISOR
design specification using dualization and step semantic
verification techniques with Dafny (§7), and the ones of
GEVISOR implementation using CBMC.

• We evaluate GEVISOR on two benchmark suites covering
various GPU workloads and deep learning computation.
Our quantitative results show that GEVISOR maintains
an average overhead of 13.1% for Darknet and 18% for
Rodinia while enabling confidential computing on GPUs.
We make our prototype implementation of GEVISOR pub-

licly available.*

2 BACKGROUND
Intel SGX. Intel Software Guard Extensions (SGX) [39]
ensures the confidentiality and integrity of user code and data.
SGX is a subset of x86 instructions allowing a process to al-
locate a protected memory region, i.e., an enclave, within its

*https://github.com/purseclab/GEVisor
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address space. During booting, BIOS lays out a separate mem-
ory region within the DRAM called the Enclave Page Cache
(EPC) for SGX enclaves. The EPC is access-restricted by the
processor and can therefore securely execute its operations
irrespective of the adversarial potential of other system com-
ponents such as the operating system (OS), Virtual Machine
Manager (VMM), etc. SGX comes at a cost of a performance
overhead from enclave transitions when entering, resuming,
or exiting an enclave.

While Intel SGX provides enclaves hardware-assisted pro-
tection against privileged attacks, it is not designed to protect
external peripheral devices and their I/O channels. That is,
the security boundary of SGX is within the CPU (communi-
cation between an enclave and an external peripheral device
is unprotected), because all external device communication
is handled by device drivers within OS by creating and main-
taining a memory-mapped I/O channel to allow user-space
applications to communicate with the intended devices. In the
adversarial model of SGX, the OS, and thus device drivers,
are untrusted as they reside outside the enclave.
Intel Virtualization Technology (VT-x). To support virtu-
alization, Intel VT-x adds two CPU execution modes: the
Virtual Machine eXtensions (VMX) root and the VMX non-
root. When a VM tries to execute a sensitive instruction in the
VMX non-root mode, the CPU detects it and context switches
to a hypervisor in the VMX root mode (a.k.a., VM Exit). Intel
VT-x also introduces two instructions, e.g., VMLAUNCH
and VMRESUME, to switch from the VMX root mode to the
VMX non-root mode (a.k.a., VM Entry).
Graphics Processing Units (GPU). We illustrate typical
GPU software and hardware components in Fig. 1. The soft-
ware stack consists of a high-level GPU Runtime and a low-
level GPU driver, whereas the hardware stack includes the
PCIe Bus and GPU Hardware. The GPU runtime could be the
CUDA runtime and driver APIs for user-space applications
(e.g., NVIDIA CUDA SDK [13]). It is responsible for the
creation and loading of GPU-compatible code called GPU
kernels (or CUDA kernels) into the GPU device, and initiat-
ing and transmitting GPU data to and from the GPU memory
through a set of APIs. The GPU device driver, such as the
NVIDIA driver [13] or open-source Nouveau [2], is responsi-
ble for the creation, deletion, and upkeep of a communication
channel with the GPU. The GPU hardware includes a com-
mand processor, compute and copy engines, and internal GPU
memory. The command processor (a.k.a., the channel engine)
is responsible for receiving commands from the GPU device
driver. The compute and copy engines are responsible for
processing commands issued by the command processor.

The GPU device driver contains these main functions:
Context and Channel Creation. GPU maintains contexts as
part of its communication with applications and uses channels

to isolate a context’s address space from other contexts. A
channel is the only way to submit commands to the GPU.
Therefore, each GPU context allocates at least one GPU chan-
nel. The GPU driver creates one context for each GPU ap-
plication process, and frees it upon the termination of the
process. Each context has its own address space and is used to
ensure separation of memory from other contexts. To create a
communication channel with the device, the driver allocates a
channel descriptor and a two-level page table within the GPU
memory by accessing the Base Address Registers (BARs).
GPU Communication. A GPU driver is responsible for creat-
ing two buffers to communicate with GPU—a message buffer
for code/data transferring between GPU memory and the ap-
plication, and a command buffer for submitting commands
to the GPU device. The message buffer is memory-mapped
to both the application and the GPU driver’s address space,
which is directly accessible by the GPU’s copy engine with-
out the assistance of the host CPU through Direct Memory
Access (DMA). The command buffer is also memory-mapped,
and used to relay commands to the GPU device. The GPU
runtime pushes various commands to the command buffer
updating the state of the GPU. For example, the GPU initia-
tion is achieved through specially-crafted commands directly
written into the command buffer. Different from the message
buffer, the command buffer is in the memory-mapped I/O
(MMIO) region, which is also mapped to user-space through
Memory Management Unit (MMU) so that user-space can
access the GPU through virtual addresses.
CUDA Runtime. The GPU Runtime has the relevant CUDA
driver APIs as follows: cuCtxCreate corresponds to the cre-
ation of a context and sets up of the message and command
buffers in the application’s address space. cuModuleLoad
loads a specific kernel to the GPU memory through the mes-
sage buffer. cuMemcpyHtoD copies memory from the host ap-
plication to the GPU device using the message buffer. cuMem-
cpyDtoH calls result in sending a command through the com-
mand buffer to the GPU device, which returns the requested
device memory to the host application through the message
buffer. cuCtxDestroy corresponds to the deletion of a GPU
context and the freeing of all the corresponding message
buffers allocated to the host application.

3 SECURITY MODEL
Threat Model. We assume the attacker can control system
software, including the OS, GPU device driver, guest VM,
and even the commodity cloud hypervisor. The attacker can
use these entities to launch an attack when a user offloads its
computation from CPU to GPU. In particular, the attacker can
attempt to directly monitor contents in the message and com-
mand buffers of GPU, craft new GPU commands, and send
them to the GPU after compromising the system software.
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Figure 2: Attack surface.

Furthermore, we assume the attacker can also create a new
GPU context and map it to the address space of a victim’s
GPU context to steal sensitive data. Fig. 2 shows the three
attack surfaces that we consider.
Attack Surface 1: DMA Buffer. A GPU device driver allocates
DMA buffers ( 1 ) for applications running in the user space.
A DMA buffer serves as a main communication channel
between an application and the GPU. By having this channel
under control, the attacker can manipulate data to and from
the GPU.
Attack Surface 2: MMIO Mapping. An adversary can manipu-
late MMIO mapping ( 2 ), which is another communication
channel between CPU and GPU. Unlike DMA, MMIO in-
volves CPU by design. Therefore, an attacker can control the
mapping using a compromised OS and manipulate the data in
the communication channel.
Attack Surface 3: GPU Context. An attacker controlling the
GPU device driver may control the allocation of all GPU
device memory and tamper with the page tables of the vic-
tim GPU context. Such an attacker could maliciously map
physical GPU pages ( 3 ) to another GPU context (or GPU ap-
plication) under her control [32]. As such, the attacker would
be able to steal sensitive information through her own GPU
context.
Trust Model. We assume both CPU and GPU devices are
trusted, including microcode with CPU. We trust the GPU
device memory because modern GPUs usually integrate the
device memory using 2.5D/3D silicon interposers inside the
same package, which is difficult to observe and corrupt the
data stored in it by the adversary [51]. We trust the measured
boot built upon Intel Trusted Execution Technology TXT [1]
and Trusted Platform Module (TPM). We also trust the system
firmware such as Intel ME, UEFI, SMM and GPU firmware,
which implies that a hypervisor, once put into the VMX root
mode, has the full control of the system until VMXRESUME
or VMXOFF.

Although we do not trust cloud providers, we assume a
cooperative cloud vendor aiming to provide confidential com-
puting for GPU as a service considering both security and
business. Thus denial-of-service (DoS) attacks against Intel
SGX or GPU are out of the scope. We do not consider physi-
cal attacks. Side-channel attacks on Intel SGX and GPU are
orthogonal to the problem that we are trying to solve in this
paper. Existing defense against the side-channel attacks are
complementary to our solution. For the GPU context isola-
tion protection, we expect the target GPU to support Unified
Memory that CUDA supports in version 6.0 and above [49],
that are readily available.

4 MOTIVATION AND DESIGN GOALS
Four directions exist to enable a trusted GPU execution en-
vironment. A comparison between the recent relevant works
in these directions and ours is presented in Table 1. 1 The
most straightforward solution is enabling CPU TEEs to talk
with GPU directly by modifying CPU hardware. For instance,
HIX [27] modifies SGX CPU to remove its I/O limitation and
builds a GPU enclave with the GPU driver inside. 2 Instead,
another solution is modifying GPU architecture to isolate
GPU contexts by providing an internal TEE, such as Gravi-
ton [51]. However, this approach cannot be applied to most
deployed GPU devices. 3 The third solution introduces a hy-
pervisor as the TCB and includes a GPU device driver within
the hypervisor or user space instead of relying on the one from
OS, e.g., TrustedPath [55]. However, commodity hypervisors
like Xen [9] or GPU drivers like NVIDIA could easily bloat
the TCB. 4 The last solution relies on remote attestation to
reduce the TCB, such as HETEE [56] and StrongBox [20]
moving GPU driver, runtime, and the AI framework out of
the TCB.

Compared with the previous work [20, 27, 51, 56], we ar-
gue that the security guarantees of trusted GPU execution
should triumph over all other considerations, e.g., covering
all the attack surfaces mentioned earlier while maintaining
a small TCB and even providing formal guarantees. Mean-
while, as a practical solution, it cannot introduce any hardware
changes so that it can be adopted and deployed to existing
systems more likely. Lastly, the overhead of securing GPU
computation should be low to be used in practice. Based on
these considerations, we list a number of design goals that
any desired solution of GPU TEE should strive to achieve.

• G1: Complete Mediation. We need to mediate all the
attack surfaces exposed by a GPU communication channel
to realize a GPU TEE, including GPU I/O accesses (e.g.,
DMA and MMIO), GPU contexts of different processes,
and the temporary sensitive code and code exposure within
the host memory.
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Table 1: Comparison between existing works and GEVISOR.

Hardware Software Formal GPU I/O GPU Context GPU Attestation Performance
Change TCB Verification Protection Isolation Support Overhead

HIX [27] CPU 39K-2M (GPU driver) - ✓ - ✓ 26%
Graviton [51] GPU - (firmware) - - ✓ ✓ 17-33%
HETEE [56] FPGA - (firmware) - ✓ - ✓ 2.17%
TrustedPath [55] - 18K-2M (driver+hypervisor) - ✓ - - 2×
StrongBox [20] - ≈ 0.3M (optee+security monitor) - ✓ ✓ - 4.7-15.26%
GEVISOR - ≈ 3.8K (GEVISOR) ✓ ✓ ✓ ✓ 13.1%
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• G2: Tamperproofness. The solution needs to be tam-
perproof against threats and attacks outside the TCB. For
example, a compromised GPU driver cannot tamper with
the GPU TEE or the GPU I/O channel.

• G3: Verifiability. The whole TCB should be small, thus
allowing for formal verification of the code for both cor-
rectness and security, and minimizing the attack surface
[50].

• G4: Deployability. The solution should be deployable
for off-the-shelf commodity systems without requiring any
hardware or major software change. Cloud providers could
be incentivized to provide such a solution as a new fea-
ture to complement their existing confidential computing
infrastructure.

• G5: Low Overhead. The solution should maintain a low
performance overhead compared to a native GPU accelera-
tion to be used in practice.

5 SYSTEM DESIGN
We propose a co-operative and lightweight hypervisor archi-
tecture in Fig. 3, which includes GPU Enclave (GE), a tiny
hypervisor named GEVISOR, and the interaction between
them, to achieve GPU TEE.

The GPU enclave consists of two components: UNTRUSTED
RUNTIME and ENCLAVE GPU RUNTIME. UNTRUSTED RUN-
TIME is located within the non-enclave memory that is un-
trusted and can potentially behave maliciously. UNTRUSTED
RUNTIME memory-maps the DMA and MMIO buffers to the
user space and is responsible for GPU context creation by con-
tacting the GPU device driver. ENCLAVE GPU RUNTIME has
to copy data from the enclave to the GPU DMA and MMIO
buffers within UNTRUSTED RUNTIME, to communicate with
GPU. We design GEVISOR, a lightweight, late-launch, and
formally security verified hypervisor, which coordinates with
ENCLAVE GPU RUNTIME, to protect the two buffers from
attacks. The interaction between GPU Enclave and GEVISOR
consists of a communication channel (CC), a shared memory
space between the enclave and GEVISOR, and a linear remote
attestation protocol. ENCLAVE GPU RUNTIME passes the ac-
cess control information from within the enclave through the
communication channel to the GEVISOR for monitoring.

Our system achieves the aforementioned design goals in §4.
GEVISOR mediates all GPU accesses for an enclave at a low
performance overhead (G5) without sacrificing deployability
to current systems. It works as a trusted reference monitor to
mediate all GPU I/O operations from the VMX root mode
(G1) with memory contraction and I/O protection function.
GEVISOR isolates the GPU device’s context of the enclave
from other untrusted processes that share the same GPU to
prevent them from accessing the GPU code and data in the
shared GPU memory. GEVISOR is tamperproof from possi-
ble attacks from the non-root mode and maintains a small
TCB formally verified for integrity, confidentiality, and isola-
tion (G2 and G3). This design allows us to avoid any changes
to the GPU driver and GPU hardware, achieving G4.

We consider two threats when using enclave to build GPU
TEE. When the enclave is executing, the attacker could at-
tempt to access these buffers through another physical or
hyperthread core. For this threat, we obtain SGX enclave
ID, instrument the GPU context creation function and I/O
memory access in GPU runtime, including the command and
message buffer addresses for securing MMIO and DMA re-
spectively (§6.1) and GPU memory pages address for context
isolation (§6.2). This information is transferred to GEVISOR
through the communication channel for monitoring. For the
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enclave and GPU context creation, we pass the enclave and
context IDs; while for the memory regions, we transfer the
virtual address and size of these regions. When the enclave
is halted, we instrument the entry point and the exit point of
ECALL and OCALL (§8) to authorize enclave access to the
MMIO regions and DMA buffer when the enclave resumes
(§6.1).

5.1 GEVISOR
GEVISOR consists of memory contraction, IO protection,
and MRTable. The techniques used in GEVISOR— the late-
launch method, I/O protection cores, and Extended Page
Table-based protection aim to achieve the design goals G2
and G5.

In order to reduce the TCB size, GEVISOR uses a late-
launch method to eliminate the machine bootstrap code. Specif-
ically, we design a dynamic hypervisor launch method us-
ing Intel TXT [1] which allows launching and measuring
GEVISOR after the platform has been initialized. During
the bootstrap phase, the user loads the Secure Initialization
Authenticated Code Module (SINIT ACM) [8], TBoot [35],
and GEVISOR into memory. Our Chain of Trust is: CPU
→ SINIT ACM → TBoot (MLE) → GEVISOR. To launch
GEVISOR, 1) TBoot invokes SENTER instruction with the
physical address of SINIT ACM as the parameter; 2) the CPU
microcode measures the SINIT ACM; 3) the SINIT ACM
first checks the hardware (CPU, chipset) and the BIOS, then
measures the TBoot; and 4) the TBoot provides a Measured
Launch Environment (MLE) for GEVISOR, measures and
boots GEVISOR. The hypervisor measurement result is used
in linear remote attestation in §5.4.

Once launched, GEVISOR reserves a few CPU cores (i.e.,
the I/O cores in Fig. 3) which do not run SGX enclaves but
for GPU I/O protection exclusively without context switching
to the VMX non-root mode. This design, combined with

the asynchronous hypercall in §5.2, essentially allows to
run enclaves and GPU I/O access control in parallel and re-
duce the number of context switches. Although the design of
GEVISOR does not mandate it, we dedicated these cores for
the hypervisor as a performance optimization in our prototype
implementation.

During the runtime, GEVISOR relies on an Extended Page
Table (EPT) to protect pages with sensitive code and data.
Unlike the typical EPT usage where trapping happens for
all the pages that belong to a VM, our memory contraction
approach first selects only a small subset of memory regions
for EPT trapping, including the MMIO/DMA memory re-
gions, SGX enclave pages, and GPU communication channel
pages. This design allows the host system to access most
physical memory on the machine without EPT violation trig-
gered. We further create a base EPT for one-to-one mapping
from Guest Physical Address (GPA) to Host Physical Address
(HPA), reducing the overhead of traditional two-level Guest
Virtual Address (GVA) to HPA address translation. Note that
VM Function (VMFUNC) instruction was introduced from
the Haswell generation and provides a hardware support for
switching between multiple EPTs. Instead, GEVISOR con-
siders a more general EPT usage without assuming the avail-
ability of VMFUNC for compatibility, leaving VMFUNC as
a complementary option for more recent CPUs.

5.2 Asynchronous Hypercall Offloading
Traditionally, EPT-based trapping mechanism for I/O moni-
toring has high overhead for large pages (e.g., DMA pages)
due to high number of context switches and its page granu-
larity based implementation, which is even worse in enclave
environment. For one page access, EEXIT is needed to exit
the enclave first and then execute VMEXIT to exit the VM
mode. Similarly, to return from VMX root mode, VMENTER
and EENTER will be needed to resume the enclave execution.
In total, four context switches would happen, polluting local
CPU cache lines.

We propose a novel asynchronous hypercall mechanism
for I/O protection that offload the I/O monitoring task to the
remote I/O cores. Observing that I/O protection requests from
enclaves only carry small payload, e.g., I/O memory range
and enclave status, without return values, we design an en-
clave hypercall interface with a unified hypercall entry format
(Fig. 4). Each entry contains six fields: hypercall ID, the sta-
tus, number of arguments, and arguments (payload), filling up
one cache line (e.g., 64 bytes in x86_64). Our design supports
batching hypercalls for group execution and asynchronous
execution to minimize the frequency of context switches. Dif-
ferent from typical hypercall designs, asynchronous hypercall
execution is offloaded to I/O cores reserved by GEVISOR
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Figure 5: Linear remote attestation.

rather than holding the local enclave core. For instance, an en-
clave core could keep pushing hypercall requests into the ring
buffer items with f ree status without waiting for the returning
of any of them (Fig. 4). Upon the request, GEVISOR will set
the status to busy and forward it to an I/O core through the
communication channel and the shared hypercall pages. We
provide an Inter-processor Interrupt (IPI) handler for each I/O
core to process the hypercall offloading following a round-
robin fashion. Whenever the processing is completed, the
status is changed from busy to f ree. In sum, we make the
asynchronous hypercall design choices to achieve G5.

5.3 Communication Channel Protection
As shown in Fig. 3, the actual communication between the
enclave hypercall and GEVISOR is via communication chan-
nels (CC), which is essentially a memory region allocated by
the enclave host process and protected by GEVISOR. During
the creation of an enclave, the host process mmaps a memory
region at a fixed address (e.g., 0x100000), which has been
agreed upon by both the host process and GEVISOR. Once
allocated, GEVISOR protects CC using EPT to trap accesses
to the CC pages. Traditionally, we could use CR3 to distin-
guish accesses from different processes. However, we also
need to prevent accesses from the host process of the enclave,
which cannot be distinguished from the enclave itself using
CR3. Instead, we track the state of enclaves to assign access
permissions as needed. Specifically, we revoke the access
permission of CC when an enclave is created by trapping the
EINIT instruction, and when it exits or terminates by trapping
the EEXIT and EREMOVE instructions. Similarly, the access
permission of CC will only be assigned when an enclave starts
to execute again, e.g., EENTER and ERESUME.

5.4 Linear Remote Attestation Protocol
Since our TCB includes both enclave and GEVISOR, we pro-
pose a linear remote attestation schema as shown in Fig. 5,
which concatenates SGX enclave measurement and hypervi-
sor measurement with TPM, as well as enclave quoting and
TPM quoting, achieving the design goals G3 and G4. We

create the attestation key for enclave from TPM, and issue the
certificates for enclave based on the AIK issued for hardware
TPM. In particular, we create two attestation keys from TPM:
the first AIK for hypervisor attestation; the second one is used
to generate AIK′ for enclave. Meanwhile, the first AIK is
used to certify the enclave attestation key instead of acquir-
ing the certificate from a certificate authority. The resulting
certificate chain ties the enclave’s AIK′ to the AIK of the
hardware TPM, and thus to the hypervisor. The advantage
of this solution is that once an AIK has been issued for the
hardware TPM, AIK′ for enclave can also be quickly certified.
Through the chain, a link is established to the hardware-TPM
platform, which make enclave and hypervisor symbiosis.

6 GPU PROTECTION
While GEVISOR provides the mechanisms to enforce page-
level access control using EPT and hypercall, we elaborate
how we achieve a trusted GPU execution with the help of
GEVISOR protecting GPU I/Os, isolating GPU contexts.

6.1 Unified GPU I/O Protection
GEVISOR has to ensure that the DMA and command buffers
are inaccessible to an attacker who attempts to use the CPU
to access these memory regions. In particular, the attacker
can attempt to access these buffers either while the enclave
is executing (through another physical or hyperthread core)
or while the enclave is in a halted state. In the following, we
explain how GEVISOR prevents both types of attacks.

As illustrated in Fig. 1, GPU I/O includes both MMIO and
DMA, both of which are outside SGX enclaves and vulnera-
ble to the tampering from privileged software. To protect these
memory regions, we propose an unified MMIO and DMA
memory access control solution. In particular, GEVISOR
maintains memory region mapping tables (MRtable) contain-
ing the virtual and physical address pairs of both MMIO and
DMA memory regions per enclave within a reserved memory
region, and traps accesses to these regions for access control,
as shown in Fig. 6.

When an enclave starts, the GPU runtime within the en-
clave will pass the virtual addresses (VAs) of MMIO and
DMA of the process to GEVISOR, as well as the enclave ID,
via the communication channel (CC). GEVISOR will take
a software page walk to get the corresponding physical ad-
dresses (PAs) instead of trusting the one within OS, and fill
up an MRtable accordingly. During the execution of enclaves,
GEVISOR can enforce access control of GPU I/O pages using
either EPT or asynchronous hypercall, as shown in Fig. 6.
EPT Trapping. We remove the read and write permissions
of each page within the MRtable ahead of time. Whenever the
GPU driver tries to read or write the memory region within
the MRtable, an EPT exception will be triggered. The EPT
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Figure 6: Memory access control.

exception handler validates the memory access by checking
(1) the current process has an enclave ID registered in the
MRtable; (2) the VA in the EPT entry matches the one in the
MRtable; (3) the PA in the EPT entry matches the one in the
MRtable.
Asynchronous Hypercall. During runtime, instead of revok-
ing the EPT table entry’s read and write permission for each
DMA memory region page, Enclaves can also use asynchro-
nous hypercall to proactively pass the MMIO and DMA ac-
cess requests from within the enclave. We build an access-list
containing all the GPU I/O addresses during normal execu-
tions of enclaves within GEVISOR. We then compare the list
against the MRtable one enclave ID, PA, and the size of the
memory access.

Upon an attack detection, GEVISOR handles illegal ac-
cesses by injecting a General Protection Fault (GPF) into
the host OS, which will terminate the offending process. We
provide two different access control mechanisms considering
their pros and cons. For instance, while the expense of EPT
trapping might be considerable, it has more number of context
switches [7]. The asynchronous hypercall design should be
lighter than the EPT one, but might introduce more overhead
when batching and offloading to a limited number of I/O
cores.
Concurrent CPU Access. The attacker can reside on a dif-
ferent non-enclave concurrent CPU core and attempt to access
the physical memory region where the DMA and command
buffers are located, while the enclave is currently executing.
GEVISOR prevents this attack by enforcing that only the
enclave-executing core(s) can actually access these memory
buffers.
Halted CPU Access. As an EPT access is granted to the
entire (physical or hyperthread) core, we have to revoke the
access permission of the MMIO and DMA regions as soon as
the enclave stops executing on that specific core. Failure to do

Ownership data structure (OM)

Context ID Enclave
ID

Physical
Address

Virtual
Address

Size

0 1 0x1ee4d20 0x600000 2097152

Figure 7: Ownership data structure.

so would mean that the attacker can access these memory re-
gions through this core as soon as the enclave exits and break
the security guarantees of GEVISOR. In particular, during an
enclave execution, there may be three reasons that cause an
enclave stops executing: (a) OCALLs, (b) Asynchronous En-
clave Exit (AEX), or (c) enclave teardown. When the enclave
performs an OCALL (e.g., to issue a system call), GEVISOR
detects the message passed through the protected communica-
tion channel (CC) and removes the EPT table entry’s read and
write permission of the memory regions within the MRtable
(§8). When an AEX event (e.g., a hardware interrupt in a
CPU core) is detected by GEVISOR, it sets up EPT protec-
tion for sensitive memory regions to prevent illegal access.
Similarly, GEVISOR detects enclave termination (e.g., when
CUCTXDESTROY is invoked or the program causes a segmen-
tation fault) and makes sure that the GPU runtime cleans up
the DMA and command buffers before allowing the OS to
access these buffers.
Defending against Malicious Peripherals. In a system with
a malicious device, the compromised OS can map the MMIO
memory of the malicious device to overlap with MMIO or
DMA memory region of the GPU. We set up IOMMU to
prevent this DMA mapping overlap. For malicious devices on
MMIO accesses, GEVISOR check PCI configuration space
and the Base Address Registers (BARs) by trapping the exe-
cution of all IN/OUT instructions via configuring the I/O port
access bitmap within the VMCS.

6.2 GPU Context Isolation
Under the unified virtual address space of GPU, the GPU page
tables translate a GPU virtual address into both a GPU device
physical address and a host physical address for initiating the
DMA, which means different GPU contexts will reflect as
different physical pages within the host memory. Enforcing
access controls to these pages from GEVISOR will essentially
allow us to achieve GPU context isolation. Similar to the
MRtable, we design the ownership metadata (OM) table as
illustrated in Fig. 7 to track the ownership of different GPU
contexts. The GPU runtime will notify GEVISOR when a
new GPU context is created, with the context ID, enclave
ID, the virtual address, and the data size. GEVISOR takes
a software page walk to translate the virtual address into a
physical address, and fill up the OM table. Whenever the
GPU driver tries to access the GPU memory region within
OM, GEVISOR will trap the access using EPT and check the
access permission based on the OM.
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6.3 Multi-User Support
We build separated communication channels and MRtables
for multiple users, thus multiple enclaves can run simulta-
neously. This design avoids the race condition and allows
enclaves parallel execution. GEVISOR support multiple GPU
contexts for each enclaves, which is different from HIX [27]
that each enclave corresponds to one GPU context. Multiple
GPU contexts execute by context switches in GPU. If there
is no any pending request for kernel execution in the current
context, a context switch occurs to another context.

7 FORMAL VERIFICATION
With the design and the GPU I/O protection of GEVISOR
in mind, we achieve G3 by formally verifying the security
guarantees provided by GEVISOR. For instance, we formally
prove that GEVISOR maintains the consistency invariants of
GPU I/O page states, and guarantees confidentiality, integrity,
and isolation of GPU I/Os. We start with building a CPU-
GPU memory model capturing the operational semantics of
CPU-GPU communications. We specify only the features that
a GEVISOR security needs. We then formalize the design
specification of GEVISOR, followed by a formal proof of its
security guarantees.

7.1 Heterogenous CPU-GPU Memory Model
As any shared-memory system, the behavior of loads and
stores between heterogenous CPU-GPU shared memory is
governed by a memory model. The heterogenous CPU and
GPU shared-memory follows a relaxed memory model. To
capture the operational semantics of CPU-GPU communi-
cations, we design a heterogenous programming language
(HPL) for CPU-GPU model. HPL is heavily inspired by the
kernel programming language (KPL) proposed in GPUVer-
ify [12], which is an abstraction of GPU kernel code. Instead,
HPL provides an abstraction for GPU devices, as shown in
Fig. 9.

The state of the system in Fig. 8 can evolve by the CPU
or GPU performing the memory action. We write oldstate

r
−→

newstate to denote a state transition that coincides with the
sending or receiving of action r.

We further define the operational semantics for CPU-GPU
shared memory communication. CPU Write removes the en-
try at the head of the DMA buffer and updates the shared

l ∈ Loc ::= N
v ∈ Val ::= Z
t ∈ T id ::= {0, . . . , T − 1}

c ∈ GPUContext ::= {0, . . . , N − 1}
DMABuf f er ::= (Loc ×Val )l ist

DB ∈ DMABuf f ers ::= T id → DMABuf f er

Statecpu ::= DMABuf f ers

GM ∈ GPUGlobalMem ::= ({R,W } × Loc ×Val )l ist

Stateдpu ::= GPU context → GPUGlobalMem

SM ∈ SharedMem ::= Loc → Val

s ∈ SyState ::= Stateдpu × SharedMem × Statecpu

Figure 9: HPL syntax.

memory with the corresponding value. GPU Write means
that a write entry can be removed from the head of GPU global
memory, whereupon shared memory is updated. CPU Step
and GPU Step describe how the overall system can evolve as
a result of a step on the CPU side or GPU side. Fence blocks
the next execution until the actions in one GPU I/O execu-
tion are complete, which corresponds to threadfence_system
in CUDA. Sync describes the synchronize primitive corre-
sponding to cudadevicesynchronize or cudastreamsynchro-
nize. Both Fence and Sync model the relaxed semantic of
memory model.

7.2 Design Specification of GEVISOR
With the help of our heterogenous memory model, we further
model the design specification of GEVISOR. At the core of
this design specification is an abstraction of the MRtable and
the OM. We use a predicate describing the contents of MMIO,
DMA entries, and the page table mappings at the time of
execution, as well as the EPT exception handler and the async-
hypercall handler (i.e., the IPI handler). The specification
relates the concrete I/O protection with the abstract MRtable
and OM states after taking a GPU access to the final states (s′

and m′) prior to returning:
predicate handler(s: state, m: MRtable, s′: state, m′: MRtable);
predicate handler(s: state, m: OM, s′: state, m′: OM)

A valid MRtable satisfies the invariants of internal consis-
tency: e.g., enclave ID is correct, and all VA-to-PA mappings
in a page table belong to the same address space. Similarly,
OM satisfies its own invariants. Furthermore each EPT ex-
ception and async-hypercall preserves the MRtable and the
OM invariants. All these invariants will form the basis of our
security proofs.

The most challenging part is modeling the page table
walker. We do not directly model virtual memory transla-
tion given the state transition prerequisite of virtual memory
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modeling. Instead, since the CUDA driver API directly manip-
ulate the contents of the memory map at the address specified
by its parameter, we define address validity solely based on
the effective address, rather than the overall machine state,
which simplifies the verification since prover validity is not
affected by the state changes.

7.3 Formal Proof
We formally prove that the GEVISOR specification described
above protects the confidentiality and integrity of enclave’s
GPU accesses, as well as GPU context isolation. We establish
the security properties of GEVISOR by proving that the en-
clave’s GPU I/O accesses are non-interference [21, 22] under
an adversary who controls the GPU driver, e.g., 1) the GPU
I/O status associated with one enclave is non-interference
with states observable outside the enclave, and 2) the state
which can be influenced by software outside the enclave is
noninterference with the GPU I/O status of the associated
enclave.

Different from existing methods reasoning about the en-
tire execution traces [50], we focus on the GPU I/O status
at the transition points to simplify our proof, based on the
fact that attackers can only observe the execution of enclaves
and GPU passively, since active attacks would be detected
by GEVISOR. The transition points in our system are the
beginning and end of enclave’s GPU I/O accesses. We con-
sider states (s, m), which comprise a concrete I/O execution
machine state s and an abstract MRtable m, such that s is
an instantiation of m. Our confidentiality property claims
that publicly observable GPU I/O outputs depend solely on
publicly observable GPU I/O inputs. Our integrity property
claims that trusted GPU I/O outputs depend solely on trusted
GPU I/O inputs.

We formalize the confidentiality and integrity with a third-
party observer. For the proof of confidentiality, the observer
is a malicious GPU driver, drivGPU. For the integrity proof,
the observer is a trusted GPU I/O access from an enclave,
encGPU. GPU MMIO and DMA memory pages in the MRtable
are linked to each enclave with an enclave ID. Therefore,
encGPU represents a GPU I/O address space that identifies
an enclave’s GPU access. We define �encGPU as relating
MRtable entries and the GPU I/O pages that look the same to
the enclave GPU I/O space when they are outside its address
space encGPU:
DEFINITION 1 (Equivalence of GPU I/O pages �encGPU ).
MRtable entriesm1,m2 are related bym1 �encGPU m2 iff :

(m1 .Statecpu ? ∧m2 .Statecpu ?)

(m1 .MMIOPage? ∧m2 .MMIOPage?)

∨(m1 .DMABufferPage? ∧m2 .DMABufferPage?)

∨(m1 .enclaveID? ∧m2 .enclaveID?)

THEOREM 1 (INTEGRITY). Let the execution of EPT ex-
ception handler or IPI handler beginning in state(s, m) and
returning in state(s′, m′) be denoted as handler(s, m, s′, m′).
Then,

∀(s1,m1), (s2,m2), (s′1,m
′
1), (s

′
2,m

′
2).(s1,m1) �encGPU (s2,m2)

∧handler (s1,m1, s1′,m1′) ∧ handler (s2,m2, s2′,m2′)

=⇒ (s′1,m
′
1) �encGPU (s′2,m

′
2)

The definition of �dr ivGPU and the confidentiality lemma
are similar with above. For the proof of integrity, �encGPU is
used, and for the proof of confidentiality, �dr ivGPU is used.

We formalise the context isolation with an observer con-
GPU and define �conGPU as relating OM entries and the GPU
global memory pages that look the same to the GPU context
when they are outside its context conGPU:
DEFINITION 2 (Equivalence of GPU context �conGPU ).
OM entriesm1,m2 are related bym1 �conGPU m2 iff :

(m1 .GM? ∧m2 .GM?) ∨ (m1 .Stateдpu ? ∧m2 .Stateдpu ?)

∨(m1 .contextID? ∧m2 .contextID?)

∨(m1 .enclaveID? ∧m2 .enclaveID?)

We formalise GPU context isolation property as:
THEOREM 2 (ISOLATION). Let the execution of EPT ex-
ception handler or IPI handler beginning in state(s, m) and
returning in state(s′, m′) be denoted as handler(s, m, s′, m′).
Then,

∀(s1,m1), (s2,m2), (s′1,m
′
1), (s

′
2,m

′
2).(s1,m1) �conGPU (s2,m2)

∧handler (s1,m1, s1′,m1′) ∧ handler (s2,m2, s2′,m2′)

=⇒ (s′1,m
′
1) �conGPU (s′2,m

′
2)

Proof. Similar to the 2-threaded version of the semantics
bi-simulation in GPUVerify [12], to verify the multi-core con-
current execution, we reason about two GPU I/O executions
beginning from initial states that are related by �encGPU ,
�dr ivGPU , and �conGPU and we proof that the final states
are also related by �encGPU , �dr ivGPU , and �conGPU . Like
GPUVerify, we use a predicated execution technique simi-
lar with [12] to reduce concurrent execution to an analysis
of a sequential program. Similar with the lock-step execu-
tion semantics in GPUVerify, our proof is structured into each
smaller step proof for each EPT trapping and async-hypercall.

We use Dafny [33] with the help of Z3 SMT solver [38] to
verify the specification of GEVISOR by specifying the predi-
cation and dualisation semantics. We first turn the invariants
into predicated forms and then prove that MRtable and OM
maintain the invariants. Furthermore, we encode the dualiza-
tion semantics in Dafny and prove that the lemmas guarantee
the confidentiality, integrity and GPU context isolation.

Besides the formal verification of GEVISOR design us-
ing Dafny, we implement GEVISOR following the verified
design specification and further model check the GEVISOR
implementation using CBMC [18]. However, the challenge
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is noninterference itself is not a logical property, which can-
not be directly encoded into the temporal logic, because it
refers to a relation between two program executions. As with
previous method [24, 48], we logically formulate noninterfer-
ence as self-composition [10], which composes the original
program with a copy that all variables is renamed to avoid
execution of a correlative pair. In particular, it reduces the
noninterference information flow policies to a safety prop-
erty: the noninterference of a program P reduces to a property
about single program executions of the program P;P’, where
P’ is a renamed copy of P. We take the above semantic-based
approach by self-composing GPU I/O execution and spec-
ify noninterference through assertions. Then we verify this
assertion code and GEVISOR via model checker CBMC auto-
matically. A tricky part is the software page table walker that
contains loops that iterate over entire MRtable, which can-
not be verified by bounded CBMC automatically. For these
special constructs, we manually audit the code. As a result,
we achieve G3 for both the design and implementation of
GEVISOR.

8 IMPLEMENTATION
We implement GEVISOR using the Bareflank [3] hypervisor,
and GPU runtime using the Gdev [28].
Dynamic Hypervisor Measured Launch. There are two
challenges to implement a dynamic hypervisor measured
launch mechanism. First, current measured launch environ-
ment (e.g., TBoot) is an early-boot method relying on the
grub bootloader with the multiboot protocol to boot itself,
which conflict with our late-launched hypervisor design. Sec-
ond, to launch OS/VMM modules as well as SINIT ACM
module, the kernel launch procedure of TBoot also relies on
the multiboot protocol to read images from disk. To solve
the above challenges, we transform the TBoot binary into
a new ELF-formatted binary, tboot.elf, to strip out the de-
bugging symbols and the multiboot header. Then we parse
the ELF format to read in each segment within tboot.elf and
copy it to the correct location within the physical memory
(e.g.,0x0804000), and get the entry point of TBoot. For SINIT
ACM, we copy it to the memory location above the TXT heap
to avoid the potential buffer overflow attack. Similarly, we im-
plement GEVISOR as an ELF, which can be parsed by TBoot
to get the entry point and jump to it with a jmp instruction.
Enclave Monitoring. For enclave creation and termination,
we trap EINT and EREMOVE leaf instructions of ENCLS
instruction by setting the ENCLS-exiting-bitmap. For enclave
entry and exit, we cannot trap them since ENCLU is an unpriv-
ileged instruction. Instead, we instrument the GPU runtime to
capture these events by adding an exit signal function before
OCALL and a resume signal function after ECALL. These
two signal functions communicate with GEVISOR via CC.

Prog. OP SP VCC Vars CLS Ts T M
GEVISOR 192 183 19 9K 21K 6 16 32

GEVISOR_M 194 184 21 9k 21k 7 18 32
GEVISOR_L 192 183 19 9k 21k 6 17 32

Table 2: GEVISOR verification results with CBMC. OP = num-
ber of assignments before slicing; SP = number of assignments
after slicing; VCC = number of VCCs after simplification; Vars
= number of variables in SAT formula; CLS = number of
clauses in SAT formula; Ts = time (sec) taken by SAT solver;
T = total verification time (sec); M = peak memory usage (MB).

Superpage Support. 4K-based page trapping incurs signifi-
cant performance degradation. Since SGX currently does not
support big page, we directly locate the EPC memory’s physi-
cal address and size with the CPUID instruction to replace the
page-table walking and use 2M-page granularity. For GPU
I/O pages, we change both the page table walker and EPT
from 4K to 2M page granularity directly.
Ring Buffer. We format the communication channel as a ring
buffer data structure, while each buffer size is determined
by the hypercall batch size. The enclave pushes hypercall
requests to the ring buffer, while the popped hypercall are
processed by IPI handler on a remote core for execution. A
batch of hypercall requests occupies a slot, and they always
have the same status (i.e., either all free or all busy). In order
to issue a hypercall, the thread within the enclave has to look
for an entry in one of its hypercall pages that contain a f ree
status. It then writes the hypercall ID and messages to the
entry. Finally, the status field is changed to busy, indicating
to GEVISOR that the hypercall is ready for execution. The
enclave core continues to look for another open slot (with
f ree status) in an increasing and cyclic order on the ring
buffer. The increasing and cyclic order of the hypercall re-
quests and the single-threaded request and execution on CPU
cores ensure the push and pop actions do not have data race.

9 EVALUATION
In this section, we evaluate the security aspect of GEVISOR
regarding its TCB size and verifiability (§9.1), the perfor-
mance impact of GEVISOR on various GPU-accelerated ap-
plications (§9.2), and the sources of GEVISOR overhead on
applications for GPU acceleration protection and remote at-
testation (§9.3). Our experimental machine uses an Intel i7-
8700K 4.7GHz CPU with Intel SGX (SDK v2.0) and 6 cores,
a TPM (v1.2), and 32GB main memory. For hardware accel-
eration, we use a NVIDIA GeForce GTX TITAN Black GPU
with 2,880 CUDA cores and 6,144MB GDDR5 384-bit mem-
ory. We use Ubuntu 18.04.4 LTS 64-bit with Linux kernel
4.15.0 as the OS.
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App Data size DMA regions (4K/2M/3M)
Back Propagation (bp) 117MB 29952/59/39

Breadth-First Search (bfs) 46MB 11776/23/16
LU Decomposition (LUD) 16MB 4096/8/6

SRAD 24MB 6144/12/8
Gaussian Elimination (GS) 32MB 8192/16/11

Hotspot (HS) 8MB 2048/4/3
Needleman-Wunsch (NW) 128MB 32768/64/43
K-nearest Neighbors (NN) 334KB 84/1/1

Pathfinder (PF) 256MB 65536/128/86

Table 3: List of Rodinia benchmark applications.

9.1 Code Size and Verification
Verification. Our implementation of GEVISOR only has
3.8K LoC allowing the hypervisor to be verifiable. To demon-
strate the verifiability of GEVISOR, we ran the CBMC [18]
model checker on the GEVISOR code with assertion added.
CBMC was able to slice away unreachable code and unroll
all the (bounded) loops successfully. Table 2 summarizes the
results of the verification. We also manually injected two er-
rors into GEVISOR to see if CBMC correctly identifies them.
GEVISOR_M is our hypervisor with an unallocated pointer
dereference error. GEVISOR_L contains a logical error that
violates an assertion statement that we inserted. In all cases,
CBMC was able to verify our hypervisor successfully.

9.2 Performance of Applications
We compare the existing solutions based on their results from
the literature (Table 1), since there existed no available system
using SGX that we could run as a baseline to compare with
GEVisor experimentally. Here, we use two baseline systems
to evaluate the overhead of GEVISOR on various applications.
Gdev uses an unmodified GPU runtime (Gdev [28]) without
any GPU protection. Enclave-GPU uses an modified GPU
runtime within enclave, but no GEVISOR protection. Using
these baseline systems, we show the performance overhead of
the applications protected by three different GEVISOR mech-
anisms in comparison: GEVISOR-EPT uses our EPT protec-
tion with the default page size (4KB); GEVISOR-EPT2M
is with the EPT protection with 2MB superpages (§ 8); and
GEVISOR-Async uses our asynchronous hypercall for GPU
acceleration protection with 3MB DMA buffer. All of the
systems run an application in a SGX enclave.
GPU Application Benchmarks. Rodinia [14] is a bench-
marking suite for heterogeneous computing, which contains a
list of GPU kernels for CUDA. These benchmarks include ma-
chine learning and graph analytic algorithms. Table 3 presents
the list of applications selected from the Rodinia benchmark
suite, and the data amounts transferred between the CPU and
GPU. GEVISOR reserves 3MB DMA buffer using the tech-
nique similar with Contiguous Memory Allocation (CMA) [4].
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Figure 10: Execution time of the Rodinia benchmarks.

Thus, we calculate the number of DMA regions correspond-
ing to 3MB DMA buffer for each application within the ta-
ble, which is used by GEVISOR-Asyn. In addition, we also
list the DMA regions numbers for GEVISOR-EPT (4K) and
GEVISOR-EPT2M (2M). The nine benchmarks are chosen by
considering diversity as well as completeness of program be-
havior: gs representing compute bound, bp, bfs, srad,
nw, and pf for I/O bound, and hs, lud, and nn for small
kernels. Fig. 10 presents the execution time of the benchmarks
with the baseline and GEVISOR systems. For most bench-
marks, GEVISOR-Async performs most efficiently with an
average of 18% overhead compared to Enclave-GPU. For the
computation-bound benchmark gs, the EPT protection mech-
anisms (GEVISOR-EPT and GEVISOR-EPT2M) yield lower
performance degradation compared with other I/O bound
applications, bp, bfs, srad, nw, and pf.

We analyze that for I/O-bound workload, our asynchro-
nous hypercall improves multi-core utilization significantly
as the message batch size increases dramatically. On the other
hand, computation-bound workload, hs, lud, and especially
nn, with small GPU kernels does not benefit from asynchro-
nous hypercall: the performance becomes even worse due to
the small amount of hypercall requests does not amortize the
IPI overhead. We expect this performance overhead can be
further reduced by employing a hardware platform with more
number of cores.
Deep Learning Benchmarks. We use the Darknet [43] deep
neural network framework to evaluate our system with more
complex and realistic workloads. We configure 128 MB for
EPC region and employ nine popular pre-trained models with
the ImageNet [44] dataset. Fig. 11 compares the execution
time of the models for prediction with and without GPU
protection. We mark the values of execution time of Gdev,
Enclave-GPU, and GEVISOR-Async above the bars. repre-
sent with unmodified Gdev, modified Gdev with Enclave,
and async-hypercall monitoring methods respectively. Using
Enclave-GPU as the baseline, our system with asynchronous
hypercall (GEVISOR-Async) has only a 13.1% overhead on
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Figure 11: Execution time of the Darknet benchmarks.
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Figure 12: Performance of multiple parallel enclaves with the
Rodinia benchmarks.

average, which is much better than an encryption-based solu-
tion (33% [51])
Parallel GPU Enclaves. We evaluate the performance of
multiple enclaves sharing the same GPU simultaneously us-
ing the Rodinia benchmarks. The results with two parallel
enclaves are shown in Fig. 12. We partition the input data
evenly among two parallel enclaves. All execution times are
normalized to that of Gdev running the benchmarks with
unmodifed Gdev (Gdev-serial), and GEVISOR-serial and
GEVISOR-parallel use asynchronous hypercall (GEVISOR-
Async). GEVISOR with parallel enclaves (GEVISOR-parallel)
demonstrates around 52% performance degradation com-
pared to the parallel Gdev with unprotected GPU acceleration
(Gdev-parallel), while it is still more performant than Gdev-
serial. We find that this performance degradation is mainly
due to the overhead from our GPU context isolation since
GPU context switches happen frequently between the parallel
enclaves during the execution.

9.3 Performance of GEVISOR Operations
We present benchmark results to analyze the sources of GEVISOR
overhead and to evaluate the performance of our asynchro-
nous hypercall and linear remote attestation.

Init MemcpyHtoD Execute MemcpyDtoH Close
Enclave-GPU 171 5 301 30 2
GEVISOR-Async 180 10 301 60 2
Overhead 9 5 0 30 0

Table 4: CUDA operation microbenchmarks (in ms). Memcpy-
HtoD and MemcpyDtoH results are for 4MB data transfer
equally.
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Figure 13: Asynchronous hypercall benchmarks.

Overhead on CUDA Operations. To understand the perfor-
mance impact of GEVISOR on individual GPU operations,
which is the cause of the overhead on the GPU application,
we run a benchmark with a matrix multiplication application
using CUDA. The application computes the multiplication of
two 1042×1024 integer matrices (4MB for each matrix). Ta-
ble 4 summarizes the overhead introduced by the key CUDA
operations. The results show that GEVISOR causes overhead
mainly on the GPU I/O from the GPU (MemcpyDtoH), but it
has no performance impact on the GPU kernel computation
(Execute) or the GPU runtime deinitialization (Close). The
reason is that GEVISOR mainly affects the performance of
I/O communication, especially on MemcpyDtoH because we
protect the GPU context isolation by monitoring the GPU
pages.
Asynchronous Hypercall. We evaluate the performance of
asynchronous hypercall extensively in microbenchmarks by
varying its batch size (Fig. 13). Fig. 13(a) compares the per-
formance between synchronous (Sync) and asynchronous
hypercalls (Async) when the hypercall is handled by the same
processor core while Fig. 13(b) compares them when the hy-
percall is handled by another core with an inter-processor in-
terrupt (IPI) that wakes up the core. We compare the two cases
to verify if the direct costs are amortized when the number of
batched calls varies. The results show that our asynchronous
hypercall scales much better than synchronous hypercall as it
does not increase the number of context switches (to and from
the hypervisor) when the batch size increases in both cases.
The performance of asynchronous hypercall starts to overtake
that of synchronous hypercall when the batch sizes reach 10
and 23 for the same core and another core, respectively, and
we find this batch size is very effective for applications with
large DMA data transfering.
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Hardware Extend Seal UnSeal Quote
Enclave SGX 2.43 2.20 4.06 10.99

Hypervisor TPM 19.83 20.88 24.72 197.34

Table 5: Performance of linear remote attestation (in ms). We
take an average of 10 runs with negligible variance.

Linear Remote Attestion. Table 5 summarizes the results
of our microbenchmark on linear remote attestation. We show
the latencies of each attestation operation within TPM and
SGX separately.

10 DISCUSSION
Deployability. Given the emerging confidential VM tech-
nologies (e.g., AMD SEV-SNP [45] and Intel TDX [17]) that
designed with an untrusted hypervisor in mind, the popu-
larity of confidential VMs is taking over application-level
enclaves in the cloud. GEVisor can be extended to Intel TDX
and AMD SEV-SNP for VMs. We also deployed GEVISOR
to a KVM-based VM environment. Based on our practice,
we recommend using the GPU pass-through and EPT 1-to-1
mapping techniques to reduce the overhead of nested virtu-
alization. For VMs sharing the same host-side EPT for all
VCPUs, we need to add a VCPU ID within MRtable and
flush the TLB of the requested VCPU core from outside the
enclave, enforcing that only the enclave-executing VCPU can
actually access GPU I/O during runtime.
Scalability. GEVISOR’s current design only supports a sin-
gle GPU, however, it should not impact the scalability of
GEVisor. For multiple GPUs, each GPU will be assigned a
unique GPUID in the MRtable and GEVisor will perform
access control using GPUID with only a small overhead (e.g.,
a few milliseconds). For complex workloads, the bandwidth
between CPU and GPU may become a bottleneck depend-
ing on the workload. Application-specific algorithms to op-
timize performance and scalability within an enclave (e.g.,
deep learning [29]) are complementary to our system since
GEVISOR does not require modifying the GPU application.

11 RELATED WORK
GPU TEE. Graviton [51] relies on architectural modifica-
tion to the GPU to support TEE for GPU. Similarly, HIX [27]
relies on hardware modification to the CPU including SGX
hardware and PCIe routing. Meanwhile, HETEE [56] sup-
ports large-scale confidential computing using PCIe Express-
Fabric to distribute computation over server nodes that are
physically isolated. StrongBox [20] builds a GPU TEE for
ARM Endpoints based on TrustZone with an integrated GPU,
while GEVISOR is designed to support trusted GPU execu-
tion with SGX enclaves without hardware change.

Software Protection against Privileged Code. Overshadow
[16], SP3 [52], InkTag [25], TrustVisor [36], Cloudvisor [53]
and Virtual Ghost [19], etc. assume a trusted virtualization
layer to protect applications from a privileged attacker. Ex-
isting works [31, 37, 46, 55] propose a hypervisor-based so-
lution to provide trusted execution of generic external I/O
devices for user-level programs. However, unlike GEVISOR
these solutions are not designed with the limitations of SGX
enclaves in mind.
Trusted Execution with Intel SGX. There have been sev-
eral recent studies [11, 15, 42] to build trusted execution
environments with Intel SGX to support generic applications
without modification. Graphene-SGX [15] allows running
an unmodified legacy application within an SGX enclave.
Haven [11] shields execution of unmodified legacy applica-
tions on Windows operating system. SCONE [42] provides
a container environment protected by Intel SGX. Different
from these solutions, GEVISOR is designed to provide trusted
GPU execution for any enclave implementations.
Formal Verification. Our verification technique is built
based on GPUVerify [12, 26]. In comparison, GPUVerify
mainly verifies the GPU kernels and focuses on two classes
of bugs only (i.e., data races and barrier divergence) while
our work focuses on verifying the security properties (confi-
dentiality, integrity, and context isolation) of I/O operations
between the CPU and GPU for enclaves. There exist other
formally verified systems for security: seL4 [30], Expres-
sOS [34], CertiKOS [23], Komodo [21] and uberXMHF [50].
Although GEVISOR, seL4, CertiKOS, and Komodo all verify
security properties based on noninterference [22], GEVISOR
is the first work to apply noninterference to GPU I/O protec-
tion to the best of our knowledge.

12 CONCLUSION
In this paper, we propose a formally verified reference monitor
GEVISOR that cooperates with SGX enclave to build a GPU
TEE without any hardware changes.

ACKNOWLEDGMENTS
We thank the anonymous reviewers and our shepherd Yang
Cao for their valuable comments and suggestions. This work
was supported in part by the National Science Foundation
(NSF) under Grant CNS-2145744, the Office of Naval Re-
search (ONR) under Grant N00014-23-1-2157, the Texas
A&M Engineering Experiment Station (TEES) on behalf of
its SecureAmerica Institute, and Wistron. Any opinions, find-
ings, and conclusions in this paper are those of the authors
and do not necessarily reflect the views of NSF or ONR.

262



Building GPU TEEs using CPU Secure Enclaves with GEVisor SoCC ’23, October 30–November 1, 2023, San Cruz, CA, USA

REFERENCES
[1] 2010. Intel Inc. Intel trusted execution technology. www.intel.com/

technology/security/
[2] 2012. Nouveau Open-Source Driver. http://nouveau.freedesktop.org/
[3] 2020. Bareflank Hypervisor SDK. http://bareflank.github.io/

hypervisor/
[4] 2021. A deep dive into cma. https://lwn.net/Articles/486301/.
[5] 2022. Microsoft confidential cloud using Nvidia GPUs.

https://www.microsoft.com/en-us/research/blog/powering-the-
next-generation-of-trustworthy-ai-in-a-confidential-cloud-using-
nvidia-gpus/

[6] 2022. NVIDIA H100 Tensor Core GPU Architecture. https://resources.
nvidia.com/en-us-tensor-core

[7] Keith Adams and Ole Agesen. 2006. A comparison of software and
hardware techniques for x86 virtualization. ACM Sigplan Notices 41,
11 (2006), 2–13.

[8] Will Arthur, David Challener, and Kenneth Goldman. 2015. Platform
security technologies that use TPM 2.0. In A Practical Guide to TPM
2.0. Springer, 331–348.

[9] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris,
Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. 2003. Xen
and the art of virtualization. ACM SIGOPS operating systems review
37, 5 (2003), 164–177.

[10] Gilles Barthe, Pedro R D’argenio, and Tamara Rezk. 2011. Secure
information flow by self-composition. Mathematical Structures in
Computer Science 21, 6 (2011), 1207–1252.

[11] Andrew Baumann, Marcus Peinado, and Galen Hunt. 2015. Shielding
applications from an untrusted cloud with haven. ACM Transactions
on Computer Systems (TOCS) 33, 3 (2015), 1–26.

[12] Adam Betts, Nathan Chong, Alastair Donaldson, Shaz Qadeer, and Paul
Thomson. 2012. GPUVerify: a verifier for GPU kernels. In Proceedings
of the ACM international conference on Object oriented programming
systems languages and applications. 113–132.

[13] Ian Buck. 2007. Gpu computing with nvidia cuda. In ACM SIGGRAPH
2007 courses. 6–es.

[14] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W
Sheaffer, Sang-Ha Lee, and Kevin Skadron. 2009. Rodinia: A bench-
mark suite for heterogeneous computing. In 2009 IEEE international
symposium on workload characterization (IISWC). Ieee, 44–54.

[15] Chia che Tsai, Donald E. Porter, and Mona Vij. 2017. Graphene-
SGX: A Practical Library OS for Unmodified Applications on SGX.
In 2017 USENIX Annual Technical Conference (USENIX ATC 17).
USENIX Association, Santa Clara, CA, 645–658. https://www.usenix.
org/conference/atc17/technical-sessions/presentation/tsai

[16] Xiaoxin Chen, Tal Garfinkel, E Christopher Lewis, Pratap Subrah-
manyam, Carl A Waldspurger, Dan Boneh, Jeffrey Dwoskin, and
Dan RK Ports. 2008. Overshadow: a virtualization-based approach to
retrofitting protection in commodity operating systems. ACM SIGOPS
Operating Systems Review 42, 2 (2008), 2–13.

[17] Pau-Chen Cheng, Wojciech Ozga, Enriquillo Valdez, Salman Ahmed,
Zhongshu Gu, Hani Jamjoom, Hubertus Franke, and James Bottomley.
2023. Intel TDX Demystified: A Top-Down Approach. arXiv preprint
arXiv:2303.15540 (2023).

[18] Edmund Clarke, Daniel Kroening, and Flavio Lerda. 2004. A tool
for checking ANSI-C programs. In International Conference on Tools
and Algorithms for the Construction and Analysis of Systems. Springer,
168–176.

[19] John Criswell, Nathan Dautenhahn, and Vikram Adve. 2014. Virtual
ghost: Protecting applications from hostile operating systems. ACM
SIGARCH Computer Architecture News 42, 1 (2014), 81–96.

[20] Yunjie Deng, Chenxu Wang, Shunchang Yu, Shiqing Liu, Zhenyu Ning,
Kevin Leach, Jin Li, Shoumeng Yan, Zhengyu He, Jiannong Cao, et al.
2022. StrongBox: A GPU TEE on Arm Endpoints. In Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications
Security. 769–783.

[21] Andrew Ferraiuolo, Andrew Baumann, Chris Hawblitzel, and Bryan
Parno. 2017. Komodo: Using verification to disentangle secure-enclave
hardware from software. In Proceedings of the 26th Symposium on
Operating Systems Principles. 287–305.

[22] Joseph A Goguen and José Meseguer. 1982. Security policies and
security models. In 1982 IEEE Symposium on Security and Privacy.
IEEE, 11–11.

[23] Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan Newman Wu, Jieung
Kim, Vilhelm Sjöberg, and David Costanzo. 2016. {CertiKOS}: An
Extensible Architecture for Building Certified Concurrent {OS} Ker-
nels. In 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16). 653–669.

[24] Jonathan Heusser and Pasquale Malacaria. 2010. Quantifying informa-
tion leaks in software. In Proceedings of the 26th Annual Computer
Security Applications Conference. 261–269.

[25] Owen S Hofmann, Sangman Kim, Alan M Dunn, Michael Z Lee,
and Emmett Witchel. 2013. Inktag: Secure applications on an un-
trusted operating system. In Proceedings of the eighteenth international
conference on Architectural support for programming languages and
operating systems. 265–278.

[26] Dan Iorga, Alastair F. Donaldson, Tyler Sorensen, and John Wickerson.
2021. The Semantics of Shared Memory in Intel CPU/FPGA Systems.
Proceedings of the ACM Programming Languages 5, undefined (2021).

[27] Insu Jang, Adrian Tang, Taehoon Kim, Simha Sethumadhavan, and
Jaehyuk Huh. 2019. Heterogeneous Isolated Execution for Commod-
ity GPUs. In 24th International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS 2019).
ACM, Providence, RI, 455–468. http://doi.acm.org/10.1145/3297858.
3304021

[28] Shinpei Kato, Michael McThrow, Carlos Maltzahn, and Scott Brandt.
2012. Gdev: First-Class GPU Resource Management in the Op-
erating System. In Presented as part of the 2012 USENIX Annual
Technical Conference (USENIX ATC 12). USENIX, Boston, MA,
401–412. https://www.usenix.org/conference/atc12/technical-sessions/
presentation/kato

[29] Kyungtae Kim, Chung Hwan Kim, Junghwan "John" Rhee, Xiao Yu,
Haifeng Chen, Dave (Jing) Tian, and Byoungyoung Lee. 2020. Vessels:
Efficient and Scalable Deep Learning Prediction on Trusted Processors.
In 11th ACM Symposium on Cloud Computing (SoCC ’20).

[30] Gerwin Klein, June Andronick, Kevin Elphinstone, Toby Murray,
Thomas Sewell, Rafal Kolanski, and Gernot Heiser. 2014. Comprehen-
sive formal verification of an OS microkernel. ACM Transactions on
Computer Systems (TOCS) 32, 1 (2014), 1–70.

[31] Youngjin Kwon, Alan M Dunn, Michael Z Lee, Owen S Hofmann,
Yuanzhong Xu, and Emmett Witchel. 2016. Sego: Pervasive trusted
metadata for efficiently verified untrusted system services. ACM
SIGARCH Computer Architecture News 44, 2 (2016), 277–290.

[32] S. Lee, Y. Kim, J. Kim, and J. Kim. 2014. Stealing Webpages Rendered
on Your Browser by Exploiting GPU Vulnerabilities. In 2014 IEEE
Symposium on Security and Privacy. 19–33. https://doi.org/10.1109/
SP.2014.9

[33] K Rustan M Leino. 2010. Dafny: An automatic program verifier for
functional correctness. In International conference on logic for pro-
gramming artificial intelligence and reasoning. Springer, 348–370.

[34] Haohui Mai, Edgar Pek, Hui Xue, Samuel Talmadge King, and
Parthasarathy Madhusudan. 2013. Verifying security invariants in
ExpressOS. In Proceedings of the eighteenth international conference

263

www.intel.com/technology/security/
www.intel.com/technology/security/
http:// nouveau.freedesktop.org/
http://bareflank.github.io/hypervisor/
http://bareflank.github.io/hypervisor/
https://www.microsoft.com/en-us/research/blog/powering-the-next-generation-of-trustworthy-ai-in-a-confidential-cloud-using-nvidia-gpus/
https://www.microsoft.com/en-us/research/blog/powering-the-next-generation-of-trustworthy-ai-in-a-confidential-cloud-using-nvidia-gpus/
https://www.microsoft.com/en-us/research/blog/powering-the-next-generation-of-trustworthy-ai-in-a-confidential-cloud-using-nvidia-gpus/
https://resources.nvidia.com/en-us-tensor-core
https://resources.nvidia.com/en-us-tensor-core
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tsai
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tsai
http://doi.acm.org/10.1145/3297858.3304021
http://doi.acm.org/10.1145/3297858.3304021
https://www.usenix.org/conference/atc12/technical-sessions/presentation/kato
https://www.usenix.org/conference/atc12/technical-sessions/presentation/kato
https://doi.org/10.1109/SP.2014.9
https://doi.org/10.1109/SP.2014.9


SoCC ’23, October 30–November 1, 2023, San Cruz, CA, USA X.Wu, et al.

on Architectural support for programming languages and operating
systems. 293–304.

[35] Richard Maliszewski, Ning Sun, Shane Wang, Jimmy Wei, and Ren
Qiaowei. 2015. Trusted boot (tboot).

[36] Jonathan M McCune, Yanlin Li, Ning Qu, Zongwei Zhou, Anupam
Datta, Virgil Gligor, and Adrian Perrig. 2010. TrustVisor: Efficient
TCB reduction and attestation. In 2010 IEEE Symposium on Security
and Privacy. IEEE, 143–158.

[37] Zeyu Mi, Dingji Li, Haibo Chen, Binyu Zang, and Haibing Guan. 2020.
(Mostly) Exitless VM protection from untrusted hypervisor through
disaggregated nested virtualization. In Proceedings of the 29th USENIX
Conference on Security Symposium. 1695–1712.

[38] Leonardo de Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT
solver. In International conference on Tools and Algorithms for the
Construction and Analysis of Systems. Springer, 337–340.

[39] Gil Neiger, Amy Santoni, Felix Leung, Dion Rodgers, and Rich Uhlig.
2006. Intel Virtualization Technology: Hardware Support for Efficient
Processor Virtualization. Intel Technology Journal 10, 3 (2006).

[40] Cong Nie. 2007. Dynamic root of trust in trusted computing. In TKK
T1105290 Seminar on Network Security. Citeseer.

[41] Roberto Di Pietro, Flavio Lombardi, and Antonio Villani. 2016. CUDA
leaks: a detailed hack for CUDA and a (partial) fix. ACM Transactions
on Embedded Computing Systems (TECS) 15, 1 (2016), 1–25.

[42] PR Pietzuch, S Arnautov, B Trach, F Gregor, T Knauth, A Martin, C
Priebe, J Lind, D Muthukumaran, D O’Keeffe, et al. 2016. SCONE:
Secure Linux Containers with Intel SGX. USENIX.

[43] Joseph Redmon. 2013–2016. Darknet: Open Source Neural Networks
in C. http://pjreddie.com/darknet/.

[44] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, et al. 2015. Imagenet large scale visual recognition
challenge. International journal of computer vision 115, 3 (2015),
211–252.

[45] AMD Sev-Snp. 2020. Strengthening VM isolation with integrity pro-
tection and more. White Paper, January (2020), 8.

[46] Takahiro Shinagawa, Hideki Eiraku, Kouichi Tanimoto, Kazumasa
Omote, Shoichi Hasegawa, Takashi Horie, Manabu Hirano, Kenichi
Kourai, Yoshihiro Oyama, Eiji Kawai, Kenji Kono, Shigeru Chiba, Ya-
sushi Shinjo, and Kazuhiko Kato. 2009. BitVisor: A Thin Hypervisor
for Enforcing I/O Device Security. In Proceedings of the 2009 ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution En-
vironments (Washington, DC, USA) (VEE ’09). ACM, New York, NY,
USA, 121–130. https://doi.org/10.1145/1508293.1508311

[47] T. Simonite. 2016. Intel puts the brakes on Moore’s Law.
https://www.technologyreview.com/s/601102/.

[48] Cong Sun, Liyong Tang, and Zhong Chen. 2009. Secure information
flow by model checking pushdown system. In 2009 Symposia and
Workshops on Ubiquitous, Autonomic and Trusted Computing. IEEE,
586–591.

[49] Yusuke Suzuki, Shinpei Kato, Hiroshi Yamada, and Kenji Kono. 2015.
Gpuvm: Gpu virtualization at the hypervisor. IEEE Trans. Comput. 65,
9 (2015), 2752–2766.

[50] Amit Vasudevan, Sagar Chaki, Limin Jia, Jonathan McCune, James
Newsome, and Anupam Datta. 2013. Design, implementation and
verification of an extensible and modular hypervisor framework. In
2013 IEEE Symposium on Security and Privacy. IEEE, 430–444.

[51] Stavros Volos, Kapil Vaswani, and Rodrigo Bruno. 2018. Graviton:
Trusted Execution Environments on GPUs. In 13th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI 2018).
USENIX Association, Carlsbad, CA, 681–696. https://www.usenix.
org/conference/osdi18/presentation/volos

[52] Jisoo Yang and Kang G Shin. 2008. Using hypervisor to provide data
secrecy for user applications on a per-page basis. In Proceedings of
the fourth ACM SIGPLAN/SIGOPS international conference on Virtual
execution environments. 71–80.

[53] Fengzhe Zhang, Jin Chen, Haibo Chen, and Binyu Zang. 2011. Cloud-
visor: retrofitting protection of virtual machines in multi-tenant cloud
with nested virtualization. In Proceedings of the twenty-third acm sym-
posium on operating systems principles. 203–216.

[54] Kehuan Zhang and XiaoFeng Wang. 2009. Peeping Tom in the Neigh-
borhood: Keystroke Eavesdropping on Multi-User Systems.. In USENIX
Security Symposium, Vol. 20. 23.

[55] Z. Zhou, V. D. Gligor, J. Newsome, and J. M. McCune. 2012. Building
Verifiable Trusted Path on Commodity x86 Computers. In 2012 IEEE
Symposium on Security and Privacy. 616–630. https://doi.org/10.1109/
SP.2012.42

[56] Jianping Zhu, Rui Hou, XiaoFeng Wang, Wenhao Wang, Jiangfeng
Cao, Boyan Zhao, Zhongpu Wang, Yuhui Zhang, Jiameng Ying, Lixin
Zhang, et al. 2020. Enabling rack-scale confidential computing using
heterogeneous trusted execution environment. In 2020 IEEE Symposium
on Security and Privacy (SP). IEEE, 1450–1465.

264

http://pjreddie.com/darknet/
https://doi.org/10.1145/1508293.1508311
https://www.usenix.org/conference/osdi18/presentation/volos
https://www.usenix.org/conference/osdi18/presentation/volos
https://doi.org/10.1109/SP.2012.42
https://doi.org/10.1109/SP.2012.42

	Abstract
	1 Introduction
	2 Background
	3 Security Model
	4 Motivation and Design Goals
	5 System Design
	5.1 GEVisor
	5.2 Asynchronous Hypercall Offloading
	5.3 Communication Channel Protection
	5.4 Linear Remote Attestation Protocol

	6 GPU Protection
	6.1 Unified GPU I/O Protection
	6.2 GPU Context Isolation
	6.3 Multi-User Support

	7 Formal Verification
	7.1 Heterogenous CPU-GPU Memory Model
	7.2 Design Specification of GEVisor
	7.3 Formal Proof

	8 Implementation
	9 Evaluation
	9.1 Code Size and Verification
	9.2 Performance of Applications
	9.3 Performance of GEVisor Operations

	10 Discussion
	11 Related Work
	12 Conclusion
	References

