
Vessels: Efficient and Scalable Deep Learning
Prediction on Trusted Processors

Kyungtae Kim
Purdue University
kim1798@purdue.edu

Chung Hwan Kim
University of Texas at Dallas
chungkim@utdallas.edu

Junghwan “John” Rhee
University of Central Oklahoma

jrhee2@uco.edu

Xiao Yu
NEC Laboratories America
xiao@nec-labs.com

Haifeng Chen
NEC Laboratories America
haifeng@nec-labs.com

Dave (Jing) Tian
Purdue University
daveti@purdue.edu

Byoungyoung Lee
Seoul National University
byoungyoung@snu.ac.kr

ABSTRACT

Deep learning systems on the cloud are increasingly tar-

geted by attacks that attempt to steal sensitive data. Intel

SGX has been proven effective to protect the confidentiality

and integrity of such data during computation. However,

state-of-the-art SGX systems still suffer from substantial per-

formance overhead induced by the limited physical memory

of SGX. This limitation significantly undermines the usabil-

ity of deep learning systems due to their memory-intensive

characteristics.

In this paper, we provide a systematic study on the inef-

ficiency of the existing SGX systems for deep learning pre-

diction with a focus on their memory usage. Our study has

revealed two causes of the inefficiency in the current memory

usage paradigm: large memory allocation and low memory

reusability. Based on this insight, we present Vessels, a new

system that addresses the inefficiency and overcomes the lim-

itation on SGXmemory through memory usage optimization

techniques. Vessels identifies the memory allocation and

usage patterns of a deep learning program through model

analysis and creates a trusted execution environment with

an optimized memory pool, which minimizes the memory

footprint with high memory reusability. Our experiments

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

SoCC ’20, October 19–21, 2020, Virtual Event, USA

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-8137-6/20/10. . . $15.00

https://doi.org/10.1145/3419111.3421282

demonstrate that, by significantly reducing the memory foot-

print and carefully scheduling the workloads, Vessels can

achieve highly efficient and scalable deep learning predic-

tion while providing strong data confidentiality and integrity

with SGX.

ACM Reference Format:

Kyungtae Kim, Chung Hwan Kim, Junghwan “John” Rhee, Xiao

Yu, Haifeng Chen, Dave (Jing) Tian, and Byoungyoung Lee. 2020.

Vessels: Efficient and Scalable Deep Learning Prediction on Trusted

Processors. In ACM Symposium on Cloud Computing (SoCC ’20),

October 19–21, 2020, Virtual Event, USA. ACM, New York, NY, USA,

15 pages. https://doi.org/10.1145/3419111.3421282

1 INTRODUCTION

Deep learning (DL) systems are widely used in many applica-

tions, such as face recognition, intelligent personal assistants,

and object detection. Many of these systems run in a shared

computing environment, a cloud infrastructure in particular,

for cost reduction and scalability [5, 6, 8]. Despite the bene-

fits, the increasing frequency of sophisticated data breaches

in the cloud [3, 7] and the emergence of new attacks that

steal machine learning data [21, 22, 27, 45, 50] have led to a

major concern of running privacy-sensitive DL systems in

an untrusted computing environment. While encryption can

protect these data at rest in storage and their transfer (e.g.,

disks and networks), it does not protect them while they are

in use during the computation.

In this regard, Intel Software Guard Extensions (SGX [18]),

a hardware feature that provides a trusted execution envi-

ronment, gained strong attention as it provides primitives

to protect the confidentiality and integrity of sensitive data

in use. SGX provides a private memory region (namely, an

enclave) to load a program and protect its code and data from

other untrusted programs during the execution. Public cloud

providers, such as Microsoft Azure [12] and IBM Cloud [11],

462

SoCC ’20, October 19–21, 2020, Virtual Event, USA K. Kim, C. Kim, J. Rhee, X. Yu, H. Chen, D. Tian, B. Lee

Techniques Performance Overhead

Eleos [43] 84.02x

TensorSCONE [34] 3.18x

TF Trusted [2] 20.11x

Table 1: Performance of recent SGX systems running

DL prediction compared to an unprotected run. We

used the InceptionV3 model [52]. Eleos is evaluated

with Darknet [46] atop. TensorFlow Lite [9] is used as

the baseline for TensorSCONE and TF Trusted.

offer SGX-capable computing platforms to support confi-

dential computation. Using SGX, one can protect DL data

in an untrusted, adversarial computing environment with

a strong attack model. In recent years, both academia and

industry have proposed techniques using SGX to protect

machine learning computation [2, 34, 41, 54? , 55] and other

applications [14, 16, 43].

Although SGX provides strong security in an untrusted

computing environment, it has a critical performance is-

sue, limiting its usability for DL computation. Existing stud-

ies [19, 53] have found that the main cause is the limited

capacity of a physical SGX memory region for protected

enclave pages, called Enclave Page Cache (EPC). Due to the

hardware design restriction, the size of EPC is limited to

128 MB1. If an enclave program over-provisions more than

the size of EPC, it suffers from a critical performance is-

sue as it requires expensive secure paging between the EPC

and non-EPC (i.e., unprotected) memory. For a DL system,

this limitation is crucial because DL programs are memory-

intensive and require large memory footprints – popular DL

models (such as VGG16) require up to 1.1 GB memory foot-

print (§5). In a production DL system with multiple enclaves

that handle many prediction requests in parallel, this prob-

lem is even more critical since all enclaves in the physical

machine have to share and compete for a single EPC region,

causing low scalability by EPC thrashing.

There are several approaches that alleviate the EPC issue.

However, we found that even the state-of-the-art SGX sys-

tems [2, 34, 43] are still significantly limited in performance

as shown in Table 1, and some of them trade functionality

and accuracy for security. Our analysis found that these ap-

proaches can be characterized into two types: a user-level

paging mechanism [43], and model size reduction [2, 34].

Both approaches are still limited in addressing the EPC issue.

The user-level paging is designed for programs with much

less intensive memory accesses (i.e., server applications). The

model reduction does not address other large memory us-

ages, such as memory buffers for input and intermediate

1Protected programs can only use around 93 MB in practice as the rest of

the 128 MB is used for metadata [19].

activations in DL computation. Besides, such model reduc-

tion based on quantization [29] affects the model accuracy

and limits the support for certain operations (e.g., floating

point operations [2, 34]). Furthermore, none of the existing

approaches address the scalability problem with multiple

enclaves.

In this paper, we conduct a systematic study on the EPC

usage problem of SGX-enabled DL prediction. By profiling

the memory usage of popular DL models [26, 28, 33, 51, 58],

we made the following key observations. First, DL computa-

tion is structured based on a sequence of individual neural

network layers. The data needed for each layer computation

are highly independent, and layers have separate memory

buffers, resulting in a bulk memory allocation that keeps the

EPC full. Second, most of these memory buffers are used

only once for a short time and never used again throughout

the entire DL execution without being deallocated. Such a

memory usage pattern with low reusability causes frequent

secure paging as many pages have to be loaded into the EPC

in a short period of time. Lastly, we found that the memory

usage of DL computation can be identified before execution.

For instance, memory usage patterns, such as how much

memory each layer will allocate and which layer accesses

which memory buffer, can be accurately analyzed ahead to

address the EPC problem. These observations offer an op-

portunity to make DL prediction more efficient and scalable

under SGX protection.

Based on our observations, we propose Vessels, a highly

efficient and scalable SGX system for DL prediction. A vessel

is a customized enclave that minimizes the memory foot-

print and optimizes the performance of DL prediction for a

target DL model. It does not incur any accuracy loss or limit

the functionality of the protected DL as it does not require

modification to the DL model or semantics unlike related

approaches [2, 34]. Our system creates and manages multiple

parallel vessels to enable scalable processing of many predic-

tion requests by minimizing the chances of EPC thrashing.

To facilitate the deployment in the cloud, we implement our

prototype of Vessels in a Docker container [39].

Our design has several key techniques: (1) optimized mem-

ory usage planning, (2) on-demand parameter loading, and

(3) EPC-aware prediction scheduling. Vessels examines a

target DL model before computation to equip the vessel with

an optimized memory pool. During the computation, this

memory pool is shared by all layers (or sub-layers) following

the optimized memory usage plan that reduces the physical

memory footprint and improves the reusability of the mem-

ory significantly. In addition, Vessels eliminates the bulk

allocation of large memory buffers for model parameters

by retrieving them in an on-demand fashion into recycled

memory buffers in the optimized memory pool. For the best

possible scalability with many prediction requests, a new

463

Vessels: Efficient and Scalable Deep Learning Prediction on Trusted Processors SoCC ’20, October 19–21, 2020, Virtual Event, USA

prediction is scheduled into a vessel with the consideration

of its estimated memory usage by balancing CPU parallelism

and the impact of EPC thrashing.

We have evaluated our design with various pre-trained DL

models. Our experimental results show that Vessels outper-

forms the state-of-the-art SGX systems with DL prediction

in both memory usage and run-time performance. Specifi-

cally, Vessels achieves a significant reduction of EPC usage

by 73-91% and improves the latency by 18-94% in a single

prediction enclave, compared to our baseline SGX system. In

our scalability test with many prediction requests, Vessels

shows an average of 195% improvement over the baseline

SGX system demonstrating its practicality to handle real-

world workloads in the cloud under SGX protection.

In summary, we make the following contributions.

• We conduct a systematic study on the memory us-

age of popular DL models under SGX protection and

found inefficiency which causes the high cost of EPC

thrashing.

• We propose Vessels, an SGX system that addresses

the EPC limitation for efficient and scalable DL pre-

diction. Vessels provides strong security to DL com-

putation with only a marginal overhead and without

compromising the functionality and accuracy of the

prediction.

• We provide various quantitative results to show the

inefficiency of the existing DL systems with SGX and

the performance improvement that Vessels achieves

by overcoming the challenges in comparison.

2 BACKGROUND

In this section, we provide the background of Intel SGX and

deep learning concepts related to our work.

2.1 Intel SGX

Intel SGX [18] is a specialized hardware feature to realize

a trusted execution environment, preserving the confiden-

tiality and integrity of code and data in use for user-space

programs. A key component of SGX is a hardware-protected

memory region, i.e., an enclave, which contains and protects

the security-sensitive code and data against untrusted en-

tities. These untrusted entities include both privileged and

unprivileged programs. To support interactions between an

enclave and untrusted programs (e.g., for system call invo-

cation), SGX provides special instructions ECALL and OCALL,
which enter and exit an enclave, respectively.

Enclave pages are encrypted and placed in a physical mem-

ory region, Enclave Page Cache (EPC), of which the size is

up to 128 MB. Since a part of the EPC is pre-assigned for

metadata (e.g., for the integrity checking of the pages), the

size of the EPC available for enclave programs is only around

93 MB (23,936 pages) in practice [19]. Whenever the EPC

space is insufficient for a new enclave page, the SGX dri-

ver evicts an old page from the EPC to the untrusted main

memory and loads the new page into the EPC. This secure

paging is expensive, costing up to hundreds of thousands of

cycles for each swapping, as it does not only entail transi-

tions to and from the enclave (causing TLB flush), but also

involves page encryption and integrity checks. In addition,

since the EPC is shared by all enclaves running in the physi-

cal machine, multiple enclaves can quickly exhaust the EPC,

causing EPC thrashing which is similar to the thrashing of

virtual memory.

2.2 Deep Learning and Models

Deep learning (DL) is a family of machine learning methods

whose models are based on artificial neural networks, which

use multiple layers to extract higher-level features in a pro-

gressive manner. Each layer is responsible for transforming

one input data into a slightly more abstract representation.

As the computation proceeds to deeper layers, a DL model

can learn complex functions to extract feature representa-

tions, such as the object edges for image classification. A DL

model is often stored in a file and consists of hyper parame-

ters and model parameters. During the development of the

neural network, hyper parameters are manually determined

and fine-tuned to represent the network structure, such as

the number of layers and connections between different lay-

ers. The weights on the connections, also known as model

parameters, are learned automatically during training based

on training data and a loss function. After deployment, the

DL program takes the learnedmodel and produces prediction

outcome given input data (e.g., the class of an input image

for image classification).

3 PROBLEM SCOPE

In this section, we describe the problem scope of Vessels.

Since this paper focuses on efficient and scalable DL on

trusted processors, it has the following two problem scopes:

(1) the protection is CPU only. and (2) the security realm

that this paper focuses on is a prediction phase of DL. Our

problem scope is aligned with that of previously proposed

DL systems for trusted processors [2, 34].

CPU-only protection. Hardware-assisted trusted execu-

tion environments (including Intel SGX and AMD SEV) as-

sert that its trusted boundaries only include the CPU, and

all other computational units (particularly hardware acceler-

ators such as GPUs and FPGAs) are untrusted. As such, in

order to fully (and correctly) leverage the security guaran-

tees offered by a trusted execution environment, DL has to

be solely running within the CPU. If any data during DL is

transferred to a GPU or an FPGA, neither the confidentiality

464

SoCC ’20, October 19–21, 2020, Virtual Event, USA K. Kim, C. Kim, J. Rhee, X. Yu, H. Chen, D. Tian, B. Lee

nor integrity security guarantees of the trusted execution

environment would hold.

DL prediction system. While DL is generally divided into

two phases, learning and prediction, we focus on protecting

the prediction phase. Training requires an extensive comput-

ing power thereby generally off-loaded to untrusted hard-

ware accelerators. In contrast, prediction requires much less

computing power and it is performed frequently whenever

a user application requests for service (e.g., from an edge

device). As such, the efficiency and scalability of a DL pre-

diction system in the cloud are significant factors in user

application performance [32]. Although a DL prediction sys-

tem can benefit from the cost reduction and flexibility of a

cloud infrastructure, privacy-sensitive organizations have

long been concerned about running prediction in an un-

trusted environment. Such reasons make a DL system for

trusted processors a desirable computing environment for

prediction as it does not require acceleration and it demands

a strong confidentiality protection.

4 THREAT MODEL

This paper assumes that adversaries aim to uncover user’s

privacy, in particular, by stealing DL user input, training data

or prediction results. An outcome of activation in each layer

is another target of attacks as it can help infer the private

input (or output) [23]. Similarly, we assume that adversaries

may access model parameters to reconstruct the training

data [22, 36]. Hyper parameters, however, remain insensitive

and public because they do not reveal any information of

input data.

Relying on the Intel SGX protection, we assume strong

adversaries that may exploit any untrusted software and

hardware as an attack surface in the target computing envi-

ronment. More specifically, we assume that adversaries may

control or compromise other application and privileged soft-

ware (e.g., OS and hypervisor) in order to attack the protected

DL prediction system by SGX. Furthermore, adversaries may

try to reveal sensitive data by accessing untrusted hardware

components, such as the physical memory. The only trusted

components are the processors and our DL prediction system

running inside the enclaves. With respect to other concerns

beyond the SGX security, such as advanced side-channel

attacks [17, 40], one may prevent them with the assistance of

recent (existing) defenses [42]; however, they are orthogonal

to this research as we focus on improving the performance

of DL prediction without compromising the level of security

that SGX provides.

(a) Latency. (b) Memory usage.

Figure 1: Latency and memory usage distributions of

DL prediction in a straw-man SGX system.

5 SYSTEMATIC ANALYSIS OF DL
PREDICTIONWITH INTEL SGX

In this section, we conduct a comprehensive study of DL

prediction in terms of its low-level execution details regard-

ing per-layer memory usages and their dependencies. The

primary intuition that motivates our work comes through

the following research question:What are the main factors

that contribute to the large latency of DL prediction with SGX?

To answer this question, we analyze the execution of DL

prediction enclaves with SGX and systematically identify

the root cause of the slowdown.

5.1 DL Prediction Systems with SGX

In our analysis, we conduct experiments on several SGX

systems that perform DL prediction inside an enclave, and

we analyze their execution to identify the root cause. In

particular, we first examine a straw-man SGX system that

runs DL prediction without any performance optimization,

and then analyze three recent SGX systems that are designed

to address the performance problem. As we clarify in §3, we

focus on CPU-only prediction workloads.

5.1.1 Straw-man System. We use a straw-man system to

represent a general SGX system that launches an enclave for

confidential DL prediction execution (Straw-man). We have

implemented this system based on an existing DL frame-

work, Darknet [46], and Intel SGX SDK, with minor changes

to Darknet to run prediction in an enclave. Table 2 shows

the result of our experiment on Straw-man with 9 popular

models. As seen in the table, the latency of DL prediction

under SGX protection is an order of magnitude higher than

the unprotected prediction (7x higher on average). For all

models, the peak memory usage is much larger than the size

of the EPC (93 MB except metadata) hence triggering secure

paging. The number of secure page swaps during the ex-

ecution is substantial across all models (from an order of

465

Vessels: Efficient and Scalable Deep Learning Prediction on Trusted Processors SoCC ’20, October 19–21, 2020, Virtual Event, USA

Model # Layers Model Size
Peak Memory Prediction Latency # Secure

Usage Unprotected Protected Overhead Paging

AlexNet [33] 13 238 MB 274 MB 1.03s 21.56s 20.9x 0.46 M

ResNet101 [26] 137 159 MB 319 MB 4.83s 24.31s 5.03x 0.43 M

ResNet152 [26] 204 220 MB 441 MB 6.73s 32.54s 5.83x 0.51 M

DenseNet201 [28] 304 66 MB 376 MB 2.54s 12.74s 5.01x 0.23 M

ResNext152 [58] 204 217 MB 566 MB 6.88s 36.17s 5.25x 0.70 M

DarkNet53 [46] 77 159 MB 273 MB 4.43s 23.51s 5.30x 0.41 M

InceptionV3 [52] 145 92 MB 337 MB 8.34s 38.63s 4.51x 0.93 M

VGG16 [51] 24 528 MB 1,121 MB 7.43s 117.79s 15.85x 3.76 M

YoloV3 [47] 106 237 MB 840 MB 53.05s 162.98s 3.07x 4.24 M

Table 2: Performance andmemory usage of DL prediction in a straw-man SGX system (Straw-man). We executed

only one prediction enclave at a time to ensure that other enclaves do not affect the result.

hundred thousands to millions), indicating that they must

be addressed to achieve low-latency prediction with SGX.

Interestingly, the model size is less than 50% of the peak

EPC memory for most of the models, suggesting that there

are other large memory usages during the execution. To

better understand the impact of secure paging and other

operations, we provide a breakdown of the latency and mem-

ory usage in Figure 1. As shown in Figure 1a, secure pag-

ing is responsible for a major part of the prediction latency

(Secure paging) – it takes up over 28% of the total predic-
tion latency. File IO represents the latency through OCALL
to load various data (including input data, model parameters,

and classification labels) from the disk. Computation denotes
the latency spent for arithmetic computation and memory

accesses (excluding the time spent for secure paging).

Intuitively, the overhead induced by secure paging comes

from a large volume of memory usage for different data, as

presented in Figure 1b. Following the largest memory space

that themodel parameters occupy (Model), the second largest
portion (18%) of the memory is used by intermediate acti-

vations (IAs). These IAs are generated by neural layers at
run-time and thus difficult to quantitatively compress without

affecting the prediction accuracy or latency [57]. The rest of

the memory is occupied by hyper parameters, classification

labels, and other miscellaneous data (Others).

5.1.2 State-of-the-art Systems. In addition to the straw-man

system, we further analyze the performance problem on re-

cent state-of-the-art SGX systems [2, 34, 43] running DL

prediction. These systems are designed to improve the per-

formance of an SGX enclave by addressing the EPC problem

in two different ways: (1) user-level paging inside the en-

clave and (2) model size reduction through quantization. The

result of our experiment on these systems is presented in

Table 3.

Peak Model # User-level # Secure

Memory Reduction Paging Paging

Eleos [43] 430 MB � 135 M -

TensorSCONE [34] 533 MB � - 0.17 M

TF Trusted [2] 1,331 MB � - 0.15 M

Table 3: Performance and memory usage of state-of-

the-art SGX systems running DL prediction with In-

ceptionV3. In Eleos, the enclave is configured with the

maximum page cache size and tested with Darknet

atop.

User-level paging. Focusing on the elimination of secure

paging for an enclave, Eleos [43] proposes a user-level paging

mechanism to run inside the enclave. Given a portion of the

EPC (smaller than 93 MB) as a fixed budget, Eleos leverages

the space as the page cache for independent paging inside

the enclave to avoid enclave exits. This user-level paging

is 3-4x faster than secure paging. However, in our analy-

sis we found that Eleos suffers from a significant number of

user-level page swaps while running DL prediction, over 100x

page swaps compared to secure paging. The root cause was

the fine-grained and frequent memory accesses to individual

elements of large (float-point) vectors, which Eleos is not

designed to handle with high efficiency. For every element

accessed, Eleos requires an address translation and this re-

sults in a substantial performance overhead (Table 1) due to

the excessive number of elements to compute – the prediction

latency is over 15 times higher than Straw-man. Such a

memory access paradigm is common in memory-intensive

DL programs and thus it is desired to have a scalable SGX

system with many frequent memory accesses.

Model reduction. TensorSCONE [34] and TF Trusted [2]

alleviate the EPC problem of SGX-enabled DL prediction

466

SoCC ’20, October 19–21, 2020, Virtual Event, USA K. Kim, C. Kim, J. Rhee, X. Yu, H. Chen, D. Tian, B. Lee

IA1
IA3 (O)

Param1

Input
Layer

“Cat”Layer
1

Output
Layer

IA4IA2 (I)

Per-layer execution

Layer
2

Layer
3

Param3Param2
(P)

O = P · f(I)

w
r rw w r w

r

r
r r

Dependency

Memory
access

Figure 2: Memory accesses of individual layers in DL

prediction (r: memory reads, w: memory writes, I : in-
put IA, O : output IA, and P : model parameters of the

layer).

by reducing the memory footprint of the DL model. Ten-

sorSCONE is based on a secure SGX container, SCONE [14]

while TF Trusted [2] relies on an SDK, Asylo [4], for the adop-

tion of SGX protection on DL prediction. The model reduc-

tion is achieved by using TensorFlow Lite [9], a lightweight

DL prediction framework originally designed for resource-

scarce embedded devices. TensorFlow Lite reduces the size

of a DL model through “integer-arithemetic-only” quantiza-

tion [29]. In our experiment, the quantized model resulted in

a much lower number of secure page swaps in these systems

than Straw-man (around 85% reduction). However, their pre-

diction latency is still an order of magnitude higher than the

unprotected execution (Table 1). On top of that, such model

reduction degrades model accuracy and does not allow certain

operations during the prediction (e.g., 2-3% accuracy reduc-

tion and unsupported floating-point operations [29]). This

limitation is difficult to completely avoid as the approach

requires modification to the model parameters and operation

semantics. Existing model reduction techniques thus focus

on minimizing those negative impacts as much as possible

(§9).

Our analysis on these SGX systems motivates a need for

a more comprehensive diagnosis on the memory usage of

DL prediction for various data, including the model, IAs and

other data, to identify the root cause of their yet-significant

performance overhead and address the EPC problem without

accuracy and functionality loss.

5.2 Memory Usage of DL Prediction

In order to precisely identify the root causes of the EPC prob-

lem, we conduct an in-depth diagnosis of the large memory

usage of DL prediction during execution. Our diagnosis is

based on program analysis on a number of DL frameworks

(Darknet [46], TensorFlow [13], and Caffe [31]). We used

both dynamic program analysis [37] and manual source code

inspection.

Per-layer execution. DL prediction is computed through

the individual layers of the neural network in the DL model.

Figure 2 illustrates the execution of a simple feed-forward

network for an image classification prediction. The example

network consists of three hidden layers (Layers 1-3) in addi-

tion to the input and output layers. The layers are executed

sequentially from the input to the output layers through the

hidden layers. The computation of each layer is semanti-

cally independent. The input layer projects the input data

to the first intermediate activations (IA) (IA1) and the out-
put layer produces the prediction result based on the last

IA (IA4). Each hidden layer performs its own computation
on a bounded set of memory buffers to produce an IA. For

instance, Layer 2 performs operations (e.g., convolution, dot

product, and activation) after reading the model parameters

(P) from Param2 and input (I) from IA2, and then writes the
output (O) to IA3.

Layer dependency. We observe that the layers are exe-

cuted in the reverse direction of their dependencies. For ex-

ample, Layer 2 has a dependency on Layer 1 since it takes

the output of Layer 1 (IA2) as its input. Similarly, Layer 3
has dependency on Layer 2 as the output of Layer 2 (IA3) in
turn becomes the input of Layer 3. Because a dependent layer

requires the dominant layer2 which is the layer to writes its

output to the memory before the dependent layer reads it,

the execution of DL prediction must follow the sequence

of the layers through the dependencies. In a more complex

neural network, a layer may have more than one dominant

layers (e.g., a layer that concatenates outputs from multiple

dominant layers). We found that in many networks, however,

a layer typically only has one dominant layer for the input

exclusively (but for no other data), and thus layers in general

have highly independent computation. In addition, the depen-

dency information can be explicitly retrieved from the hyper

parameters of a model along with other information, such as

the layer operations and the sizes of the model parameters

and IAs of each layer.

Memory management. Our detailed analysis on the ex-

ecution of DL prediction found significant inefficiency in

memory management. Specifically, in the current design of

DL programs, the memory buffers for model parameters and

IAs are allocated (i.e., reserved) in the virtual memory at the

beginning of the execution all at once. The pages for these

memory buffers are committed to the physical memory (i.e.,

the EPC) when the program accesses them for the first time.

Importantly, the commitment of these pages is kept through-

out the entire DL execution and de-allocated only after the

output layer generates the prediction result. Figure 3 shows

how the committed memory grows over time as the layers

2Taking a similar term to a dominator node in control flow graphs.

467

Vessels: Efficient and Scalable Deep Learning Prediction on Trusted Processors SoCC ’20, October 19–21, 2020, Virtual Event, USA

Param2

IA3

Param1

IA1
IA2

Param3

IA4

Layer
1

Layer
2

Layer
3

Input
Layer

Output
Layer

1

0.5

M
em

or
y

co
m

m
itm

en
t

ra
te

Time

(a) Current.

Param2
IA3

Param1
IA1

IA2
Param3

IA4

Layer
1

Layer
2

Layer
3

Input
Layer

Output
Layer

1

0.5

Time

(b) Optimal.

Figure 3: Current and (virtually) optimal lifetime of

committed memory buffers in a DL program during

prediction.

are executed in the current design of DL memory manage-

ment (Figure 3a) in comparison with an optimal design that

may be feasible (Figure 3b). As illustrated, the current mem-

ory management of a DL program has a high and increasing

commitment rate. Such usage of the physical memory results

in a high secure paging rate since the large memory buffers

fill up the EPC in the early stage of the execution. The details

of the current DL memory management are as follows.

First, the model parameters of the entire network (i.e.,

Param1, Param2, and Param3 in Figure 3a) are loaded into
the memory together at once from the disk. In DL com-

putation, however, each layer only requires its own set of

model parameters in the memory (but no other parameters),

as they are exclusively assigned to only one corresponding

layer. During the execution of other layers, the pages are

in the committed state unnecessarily and increase the EPC

usage of the DL prediction. Similarly, the IAs are committed

in memory for a long time although they are only required

for a short time period. Unlike model parameters, IAs are

generated dynamically by the layers during the prediction.

We found that after an IA is committed to the memory, it is

only accessed by a very small number of layers (layers that

produces it and other dependent layers) for a short period of

time and never accessed for the rest of the time.

Such low memory reusability in the design resulted in high

occurrences of secure paging in our experiment, and thus

a resolution is desired to achieve optimal memory usage.

Most DL models have a much larger number of layers than

our example network (up to 304 in the models we tested),

and thus the inefficiency can be more significant in practice.

Notably, such a paradigm of inefficient memory usage may

not be problematic for DL prediction without SGX since the

main memory is abundant in most computing environments.

However, this causes a severe performance drop in protected

DL prediction with SGX ($5.1) due to the small EPC capacity

and the inefficient memory usage that we discovered.

In a production DL system that receives many prediction

requests for a short period of time, this problem becomes

Memory Usage
Planning

On-demand
Parameter Loading

Layer Dependency
Extraction

Optimized
Memory Pool

Vessel

EP
C
-a

w
ar

e
Pr

ed
ic

tio
n

S
ch

ed
ul

in
g

Model

…

Encrypted

Figure 4: Architecture of Vessels.

much more serious as multiple enclaves in a physical ma-

chine have to run in parallel and compete for a small EPC

region. This results in excessive secure paging (EPC thrash-

ing) and low scalability of the system with multiple enclaves.

Consequently, this problem motivates us to develop a new

DL system with optimized memory management (similar to

Figure 3b) for efficient and scalable prediction with SGX.

6 DESIGN OF VESSELS

In this section, we present the design of our system, Ves-

sels. Vessels is designed to address the memory usage in-

efficiency of current DL systems with SGX, based on the

discovery that we made in our systematic analysis. Figure 4

shows the overall architecture of Vessels. In our system, a

vessel is an optimized enclave for a given DL model. Using

the layer dependency information extracted from the model,

a vessel minimizes the memory footprint of the DL program

in the EPC and thus achieves efficient DL prediction. Multi-

ple vessels can be run in parallel to achieve high scalability

with many prediction requests in a multi-core environment,

considering both the EPC and core utilization. We describe

the details of our key techniques as follows.

6.1 Layer Dependency Extraction

Given an encrypted DL model in the disk, a vessel first reads

the hyper parameters in the model with an OCALL and de-
crypts them into a temporary memory buffer before the

computation of the prediction. In our system, the hyper pa-

rameters are loaded into a network graph to represent the

neural network structure in the memory. Each node in the

graph represents a layer and has the hyper parameters that

determine the layer computation, such as the operations to

perform, a number of model parameters, and a number of IA

elements to produce. Each directed edge connects two nodes

to represent a data flow between two layers through the IA.

Layer dependency graph. Our graph analyzer examines

the network graph and constructs a layer dependency graph

that has the per-layer memory sizes and dependency infor-

mation as its nodes and edges, respectively. To construct this

graph, the analyzer identifies the dependent layers for each

layer in the network graph where these dependent layers

468

SoCC ’20, October 19–21, 2020, Virtual Event, USA K. Kim, C. Kim, J. Rhee, X. Yu, H. Chen, D. Tian, B. Lee

Algorithm 1Memory usage planning using a layer depen-

dency graph.

1: function getOptimizedMemoryBuffers(G)

2: B ← new list

3: for l ∈ G .layers do

4: if l is a hidden layer then

5: B .append (new Param(getParamSize(l), l , 1))

6: d ← max(l .D) � Last dependent layer

7: B .append (new IA(getIASize(l), l , d − l + 1))

8: B′ ← sort B by the last attribute � Sort by ascending lifespan

9: return B′

10: function getMemoryUsagePlan(G)

11: P ← new list

12: M ← new |G .layers | array of zeros

13: for b ∈ getOptimizedMemoryBuffers(G) do

14: end = b .beдin + b .l i f espan

15: b .of f set ← max(M [b .beдin] ... M [end])

16: M [b .beдin] ... M [b .end] ← b .of f set + b .size

17: P .append (new Allocate(b .beдin, b .of f set , b .size))

18: Size ← max(M) � Memory pool size

19: return P , Size

are the destinations of all edges that start from the layer. In

addition, it leverages the hyper parameters in each layer to

calculate the sizes of the per-layer memory buffers for the

model parameters and IA. Unlike other programs exhibiting

non-deterministic behaviors at runtime, such memory sizes

can be accurately identified in a DL program because the allo-

cation of the memory buffers must follow the pre-determined

hyper parameters.

6.2 Memory Usage Planning

In our system, each vessel is equipped with an optimized

memory pool and this memory pool operates by following a

memory usage plan that our technique generates.

Optimized memory pool. An optimized memory pool is

an EPC-committed contiguous memory space that facilitates

high memory reusability. In a vessel, all layers in the DL

program use this memory pool to allocate memory buffers

for model parameters and IAs. The size of the memory pool

is fixed and determined before the computation of the layers

by the memory usage planning. Because the memory usage

plan recycles a significant amount of memory in the memory

pool, the size of the memory pool is much smaller than

the memory usage before the optimization. This allows our

system to keep only a small number of pages for each vessel

inside the EPC, resulting in efficient utilization of the EPC.

Memory usage plan. Algorithm 1 presents how a memory

usage plan is generated. Using a layer dependency graph (G)
as an input, this algorithm finds the optimized lifespans of

the memory buffers and generates a plan to allocate them

while reusing the memory space. Figure 5 shows an example

memory usage plan.

I L1 L2
IA2IA1

L3

IA4IA2

L4
IA4

IA1
IA2

IA3

IA4

Param2 Param3 Param4Param1

L5

IA5

O

Param5

IA5 IA6

IA6

IA3

Layer Dependency Graph:

Optimized Memory Pool:

O
ff
se
t

Time

Figure 5: An example memory usage plan on an opti-

mizedmemory pool, derived from a layer dependency

graph (I: input layer, O: output layer, L1-L5: hidden lay-

ers).

First, it goes through each node (i.e., layer) in the layer

dependency graph sequentially from the front to the back

layers in order to use the layer and dependency information

(lines 3-7). For each hidden layer, the optimized lifespan of

the model parameter buffer is constantly one layer since the

parameters are exclusively assigned to one corresponding

layer (line 5). On the other hand, the optimized lifespan of a

IA buffer is determined by the dependent layers. For example,

in Figure 5 IA2 is accessed by the layers L2-L3 and thus it
must be present in the memory until L3 finishes using it.
Similarly, the optimized lifespan of IA4 is L3-L5, from the
beginning of the layer that produces the IA to the end of the

last dependent layer (lines 6-7). After the optimized lifespans

(B) are identified, the memory buffers are re-arranged to
have the ones with the shortest lifespan first and the longest

lifespan last on the list (B′).

Given the optimized lifespans of the memory buffers, al-

location is planned on each buffer (lines 13-17). The offset

of a new buffer in the memory pool (M) is determined by
the current size of the committed space in the optimized

timespan (line 15). The new buffer will be allocated at the

lowest offset above the previously committed space. In this

way, the allocation plans (when to allocate, the offset and

size) for all memory buffers are made (line 17). In addition,

the size of the optimized memory pool is determined (line

18).

Sub-layers. Due to massive model parameters, certain lay-

ers often consume excessively large memory in reality, in-

ducing a large optimized memory pool. To address this, our

framework partitions the entire computations in a large layer

into multiple sub-layer computations. The rationale is since

a layer computation is nothing but a dot-product operation,

vector operations can be divided into sub-layer partitions,

making it possible to partially load model parameters. Con-

sidering the algorithm above, while estimating the size of

parameters (line 5), it makes sure that the estimated amount

of model parameters exceeds a threshold which is taken from

an input for this purpose. If satisfied, it only allocates the

469

Vessels: Efficient and Scalable Deep Learning Prediction on Trusted Processors SoCC ’20, October 19–21, 2020, Virtual Event, USA

maximum of the partitioned parameters, rather than whole

parameters assigned to the current layer. As such, the size

of the optimized memory pool can be kept small and the

utilization of the optimized memory pool space can be high

throughout the execution.

6.3 On-demand Parameter Loading

In contrast to dynamically generated IAs, model parameters

are in a form of pre-generated values (by training) stored

in a model file. Since the current memory management of a

DL program has a bulk allocation of memory buffers, loads

all model parameters from the file at once, and keeps the

buffers committed for a long time (§5), it does not fit into our

optimized memory usage plan. In our system, we address

this by loading the parameters in an on-demand fashion.

Because model parameters are assigned to a specific layer

and they are only used once during the computation of the

corresponding layer (and never used again), layers can time-

share a small memory region in the EPC and avoid occupying

a large EPC space for all parameters. Using the parameter

information of each layer in the layer dependency graph,

a vessel identifies the location of the parameters assigned

to each layer in the file and loads them at the beginning

of the corresponding layer in an OCALL. The parameters are
loaded into thememory buffer in the optimizedmemory pool,

and thus only present in the EPC for an essential period of

time. Our approach requires an OCALL for each layer thereby
triggers a more number of enclave exits than the all-at-once

approach. However, we discovered through experiments that

the all-at-once approach causes a much higher overhead for

parameter loading than our on-demand parameter loading.

Specifically, the secure paging overhead caused by the large

parameter buffers overwhelms the overhead caused by the

OCALLs.

Transposed parameters. In some models (e.g., VGG16),

model parameters require a transpose before they are used

by the layers. A transpose requires an additional memory

space to store the outcome of the computation, in addition

to the parameter buffer, resulting in a 2x memory commit-

ment for the parameters. In our system, the memory usage

planning identifies whether each layer requires a transpose

on the model parameters (using the information in the layer

dependency graph), and generates an additional plan to allo-

cate a memory buffer for the transposed parameters in the

optimized memory pool. The optimized lifespan and size of

this buffer is equal to that of the original parameters.

6.4 EPC-aware Prediction Scheduling

A production DL system often receives a large number of

prediction requests that require scalable processing. In a

Algorithm 2 EPC-aware prediction scheduling

1: function predictJobSchedule(G , T)

2: cur ← 0 � Current memory occupation

3: P , Size ← getOptimizedMemoryBuffers(G) � Algorithm 1

4: Sizet ← getTotalMemorySize(Size)

5: while True do

6: sleep until an event e is received.

7: if isJobReceived(e) then

8: j ← getJobReqest

9: if T > cur + Sizet then

10: e ← createEnclave(P , Size)

11: cur ← cur + Sizet
12: e .execJobInEnclave(j)

13: else

14: enqeue(j)

15: else if isCpuReleased then

16: e ← getEnclave

17: if isQueuedJob then

18: j ← deqeue

19: e .execJobInEnclave(j)

20: else

21: destroyEnclave(e)

22: cur ← cur − Sizet

computing environment with multiple cores, such a work-

load can be scheduled into parallel processes to achieve a

high scalability. However, such parallelism causes a high

congestion on the EPC (i.e., EPC thrashing) and degrades the

performance in a DL system with SGX, since all enclaves in

the physical machine have to compete for a single small EPC

region. Although our system alleviates this issue by reducing

the memory footprint for an individual prediction request,

it may suffer from the scalability issue when multiple ves-

sels are launched and the EPC is filled up. We address this

problem by a prediction scheduling mechanism that consid-

ers the current usage of the EPC. Algorithm 2 presents our

scheduling mechanism.

Our mechanism takes the upper bound of total committed

memory to EPC as an input threshold (T). This threshold is
determined by a single run of an experiment that finds the

best performance point for a given model (§8.3). For every

prediction request, our mechanism checks if scheduling a

new prediction will violate the threshold (and thus cause

EPC thrashing). It uses the memory usage estimation of the

running vessels to calculate the current usage of the EPC (line

9) and launches a new vessel only if the new usage will not

exceed the threshold (lines 10-12). If either the prediction will

not fit into the memory or all cores are currently occupied,

then it adds the request into the FIFO queue and waits until

a vessel terminates after the prediction (line 14). Upon the

termination of a vessel, a new vessel is launched and a request

from the queue is scheduled into it (lines 17-19).

470

SoCC ’20, October 19–21, 2020, Virtual Event, USA K. Kim, C. Kim, J. Rhee, X. Yu, H. Chen, D. Tian, B. Lee

7 IMPLEMENTATION

We implemented Vessels using the Darknet neural network

framework [46] as the basis, for its portability and flexibility.

Note that the architecture of Vessels is agnostic to Darknet

and applicable to various DL platforms. Pre-trained models

by other DL frameworks can be converted into Darknet mod-

els for our system [1]. Since the baseline version of Darknet

is incompatible with SGX, we ported its source code to an

SGX-compatible form based on the Intel SGX SDK version

1.5 for Linux. We measured the number of secure page swaps

by modifying the SGX device driver. For the ease of deploy-

ment in a cloud infrastructure, we packaged Vessels in a

Docker container [39] and performed experiments using this

container.

8 EVALUATION

In this section, we evaluate the efficiency and scalability

of Vessels with a single enclave and multiple concurrent

prediction enclaves.

8.1 Experimental Setup

Our experiments are performed on a machine with an Intel

Core i7-6700 3.40GHz CPU and 32 GB RAM running Ubuntu

16.04 with Linux kernel of version 4.8.0-36-generic. We con-

figure the BIOS to setup 128 MB for EPC region. As we

present in §5, we employ 9 popular pre-trained models [26,

28, 33, 46, 47, 51, 52, 58], and ImageNet [48] as the sources

of prediction dataset. For the models that Darknet frame-

work does not support by default, we either generate them

from scratch through our own training process or a model

conversion from other DL frameworks (e.g., Caffe [31]).

8.2 Single Prediction Enclave

We first evaluate the effectiveness of Vessels for a single

prediction in terms of three aspects: the latency of a predic-

tion, memory consumption, and the number of occurrence

of secure paging. To begin with, Vessels is deployed within

an enclave, as described in §6.2, taking an image as an input,

then makes a prediction for each DL model.

We compare the performance result of Vessels with a

straw-man SGX system (Table 4). Overall, Vessels signif-

icantly outperforms Straw-man for all the target models,

in both the memory footprint and runtime overhead. The

overhead induced by our memory usage planning is 0.7s on

average (included in the execution time in Table 4), which

is a one-time cost per model and therefore negligible. Re-

garding the EPC usage, Vessels achieves much less memory

footprint than Straw-man; Vessels consumes memory less

(≤ 59 MB) than the EPC limit (93.5 MB) for the DL models

except VGG16 and YoloV3. As expected, such an optimized

memory footprint causes significant reduction of paging; all

memory buffers used during the prediction remain within

the EPC region, thus none of paging happens in most cases,

rendering Vessels to complete the prediction job much ear-

lier than Straw-man (even at a near native speed).

In both VGG16 and YoloV3, however, their peak memory

exceed the EPC limit even after the significant improvement

(86% and 73%) over the original memory usage. According to

our analysis, an auxiliary buffer to support a convolutional

layer still takes up over 100 MB. That remains unoptimized

in memory as the memory pool accommodates solely inter-

mediate activations and model parameters in our design3.

Note that a larger memory pool is required for YoloV3, whose

convolutional layers operate upon a much larger volume of

IAs according to its hyper-parameter.

We also compare the performance of Vessels with the

recent SGX systems [2, 34, 43] described in §5. In our exper-

iment, we run InceptionV3 on the three SGX systems and

Vessels for a comparison – TensorSCONE and TF Trusted

require a modification to DL model and have limited the

number of models we could run on all four systems. In

our result, Vessels shows an overhead of 1.97x compared

to an unprotected run, outperforming Eleos [43] and TF

Trusted [2] significantly (19-82x improvement in latency)

and TensorSCONE [34] by 1.2x improvement (Table 1). It is

noteworthy that Vessels offers more efficient DL prediction

than TensorSCONE and TF Trusted while the systems uses a

feature-reduced version of the DL model (with quantized pa-

rameters) in expense of lower accuracy. Moreover, Vessels

improves prediction efficiency further when concurrent en-

claves are to handle many prediction requests (§8.3), which

is out of scope of these existing systems.

In summary, Vessels achieves a significant reduction of

memory over the original memory usage, ranging from 73%

to 91%. As a result, it reduces the prediction latency by 18%-

94% and 1.2-82x compared to Straw-man and the recent

SGX systems, respectively.

8.3 Concurrent Prediction Enclaves

We extend our experiment to evaluate Vessels to handle

many prediction requests with multiple prediction enclaves

that run in parallel. For high throughput, it would be de-

sired to handle as many requests as possible in parallel in

a multi-core computing environment. However, the size of

the EPC does not scale with the number of enclaves with

SGX. Launching a new enclave for every prediction request

causes an excessive number of secure page swaps and leads

to an EPC thrashing.

To test how Vessels improves the performance of concur-

rent prediction enclaves with the memory optimization and

EPC-aware scheduling respectively, we examine the number

3We leave further improvement on this as future work.

471

Vessels: Efficient and Scalable Deep Learning Prediction on Trusted Processors SoCC ’20, October 19–21, 2020, Virtual Event, USA

Models

Peak Memory Performance
Vessels

Execution Time Performance Secure Paging

Peak Memory Reduction from Memory Pool
Time

Improvement over
of Swaps

Reduction from

in Vessels Straw-man Straw-man Straw-man

AlexNet 29 MB 89.5% 8 MB 1.29s 94.01% 0 100%

ResNet101 38 MB 88.1% 23 MB 7.34s 69.81% 0 100%

ResNet152 39 MB 91.2% 23 MB 10.77s 66.90% 0 100%

DenseNet201 42 MB 88.8% 19 MB 4.71s 63.02% 0 100%

ResNext152 59 MB 89.6% 41 MB 11.04s 69.47% 0 100%

DarkNet53 53 MB 80.6% 30 MB 7.2s 69.37% 0 100%

InceptionV3 49 MB 85.4% 18 MB 16.44s 57.44% 0 100%

VGG16 156 MB 86.1% 34 MB 50.12s 57.44% 1.86 M 50.53%

YoloV3 225 MB 73.2% 85 MB 132.18s 18.89% 3.48 M 17.92%

Table 4: Performance of a single prediction enclave in Vessels compared to Straw-man.

(a) AlexNet (b) ResNet101 (c) ResNet152 (d) DenseNet201 (e) ResNext152

(f) DarkNet53 (g) InceptionV3 (h) VGG16 (i) YoloV3 (j) Mixed Models

Figure 6: Number of prediction requests handled over time by concurrent enclaves. Vessels-S and Vessels-M
exhibit the result for Vessels with and without EPC-aware scheduling, respectively. Mixed Models is an average

result of multiple runs with randomly selected DL models.

of prediction requests that three systems handle over time:

Straw-man, Vessels-M, and Vessels-S. Figure 6 presents
the result of the three systems with concurrent enclaves.

Our experiment issued an unbounded number of prediction

requests to the three systems for 100 minutes. As a base-

line, we ran Straw-man on 8 fixed number of concurrent

enclaves, equal to the number of processor cores, without

considering EPC usage (Straw-man). Similarly, Vessels-M
is run on the fixed number of concurrent enclaves but it

employs the memory optimization of Vessels. Vessels-S,
on the other hand, employs both the memory optimization

and EPC-aware prediction scheduling. We used per-model

memory thresholds ranging from 100 MB to 250 MB in our

experiments.

As shown in the figure, the number of processed requests

show a mostly linear growth for all models, but with a more

significant growth rate with Vessels-M and Vessels-S
over time. As a result, the improvement that Vessels-M and
Vessels-S bring over Straw-man is substantial after 100
minutes of processing (an average of 131% for Vessels-M
and 195% for Vessels-S) as shown in Figure 7.

472

SoCC ’20, October 19–21, 2020, Virtual Event, USA K. Kim, C. Kim, J. Rhee, X. Yu, H. Chen, D. Tian, B. Lee

57
2%

11
8%

11
6%

95
%

14
5%

51
%

43
%

27
% 11
%

38
%

88
%

31
%

32
%

18
% 46
%

21
1% 2%

72
%

74
%

20
%

Figure 7: Performance improvement of Vessels over

Straw-man. The improvement is calculated based on

the number of prediction requests handled for 100

minutes.

Compared to Vessels-M, the use of EPC-aware predic-
tion scheduling by Vessels-S further improved the perfor-
mance of Vessels by 64% on average. We analyze that the

performance improvement by Vessels-S is smaller for In-
ceptionV3 (2%) compared to other models because of its

high-density dependencies that cause much more frequent

accesses to the EPC. Due to the large memory footprint even

after the memory optimization, Vessels-M did not improve
the performance significantly with YoloV3, in comparison

with other models. In Mixed Models, we used a randomly
selected DL model among those 9 models for each request

to demonstrate the performance of Vessels with diverse DL

models in a shared cloud platform by multiple users/services.

Since the memory footprint differs across DL models, the

corresponding memory constraint used by the EPC-aware

prediction scheduling can be adjusted for the best perfor-

mance. Based on our empirical study, we use per-model

memory constraints, ranging from 100 to 250 MB. For Mixed
Models, 250 MB is used to accommodate any DL model used
in the experiment.

9 RELATEDWORK

Deep learning in trusted execution environments.

Deep learning is used in many security-sensitive applica-

tions such as face recognition and fingerprint scanning.

Hardware-assisted protection techniques e.g., Intel SGX [18]

and ARM TrustZone [44] have been proposed to provide a

confidential computing environment for DL. Related work

have been dedicated to the performance improvement due

to resource restriction in the trusted execution environ-

ments [2, 34, 49, 54, 55, 55, 56]. TensorSCONE [34] and

TF Trusted [2] utilize TensorFlow Lite [9] to reduce the

size of a DL model and run prediction in an SGX enclave.

Despite their effort to improve performance, they still

suffer from massive secure paging caused by large vector

computation or compromise the prediction accuracy by

using quantization.

Peter et al. [56] has a similar goal as our work to improve

performance by partitioning large matrix buffers, but their

work targets embedded devices equipped with TrustZone.

Privado [54] achieves a smaller TCB by placing partial DL

specific libraries in an enclave. Unlike Vessels, however,

they neither accomplish a suitable size of EPC (i.e., 128 MB)

even for a single request, nor consider multiple prediction

requests that would be a common prediction requirement

in practice. SGX-BigMatrix [49] introduces an SGX-specific

data analytic framework on which matrix computations op-

erate in an efficient and secure way. While this work focuses

on oblivious execution of general data analytic operations

(e.g., sorting) with SGX, our work focuses specifically on

the efficient and scalable execution of DL prediction with

SGX. Slalom [55] enables an SGX-based DL system to se-

curely offload certain operations to hardware accelerators.

In comparison, Vessels addresses challenges in protecting

the entire “in-house” execution of DL prediction without

limiting the scope of the protection to specific (offload-able)

operations.

Performance improvement of trusted execution envi-

ronments. Beside DL systems running on trusted proces-

sors, there are other approaches that tackle general overhead

issues caused by trusted processors. Eleos [43] provides a so-

lution to circumvent costly enclave transitions, by deploying

a virtual address space atop of existing Virtual Memory (VM)

and asynchronous system calls. However, as shown in §5,

extra address translations within a user-level enclave are too

expensive, and becomes crucial drawbacks to DL workloads.

VAULT [53] particularly focuses on improving the overhead

of integrity checks during enclave memory accesses, and it

is achieved through decent data structures and compression

techniques. Unfortunately, such architectural approaches in-

volve deployment issues. Glamdring [35] aims at performing

source code level partitioning through various program anal-

ysis techniques. However, such a code-centric approach is

rarely helpful for the improvement of data-driven programs

such as DL programs.

Resource optimization of deep learning. A large body

of research work in the literature focuses on the improve-

ment of DL system performance. Model-based optimization

is a common practice to achieve this. Quantization tech-

niques [9, 30] change the original model parameters into

a lightweight form. Model pruning techniques [20, 24, 25]

reduce parts of a large volume of parameters that unlikely

affect the intermediate activations and final classification.

Although these techniques are different, both suffer from af-

fecting classification accuracy in common because of the loss

473

Vessels: Efficient and Scalable Deep Learning Prediction on Trusted Processors SoCC ’20, October 19–21, 2020, Virtual Event, USA

of information in the original model. It is worth noting that

these techniques can be applied to our scheme, improving

Vessels’ performance further (at the expense of accuracy).

Model compression [57] is another type of optimization,

in which parameter data is recorded in a compressed form.

In spite of their lossless nature, it does not help reduce the

total runtime memory consumption, as the decompressed

data should be placed in a secure memory region on their

use. AWS SakeMaker Neo [10] is a recent technology by

Amazon to improve DL prediction performance. Orthogonal

(and thus complementary) to Vessels, it focuses on platform-

specific optimization of DL prediction during compilation

while Vessels focuses on memory optimization and memory

budget-aware scheduling of confidential DL prediction tasks.

10 DISCUSSION

Fragmentation of the memory pool. Although Vessels

keeps the size of the memory pool small for most DL models

in our experiments, the amount of memory required to exe-

cute each layer varies across different layers in a DL model.

As such, the size of the shared memory pool is determined by

the layer with the largest memory consumption in our sys-

tem, leading to fragmentation of the memory space for layers

with smaller memory consumption. One way to address this

is to partition each layer into small sub-layers such that the

size variations across all sub-layers become negligible. We

leave this as our future work.

Multi-process vs multi-thread prediction. In our imple-

mentation and evaluation, we use multiple separated en-

claves based on the multi-process design, rather than multi-

threading mainly for two reasons. First, in a cloud environ-

ment, multiple requests may belong to different users. Sec-

ond, from the security perspective, it can offer better isolation

with separated memory address space. Nevertheless, multi-

thread scheduling may offer better performance, although it

has potential race conditions to be addressed.

GPU acceleration. By default, SGX does not support GPU-

assisted acceleration, and our work focuses on CPU-only

computation environment accordingly. Nonetheless, there

are continuing efforts to take advantage of GPUs to speed

up SGX execution [55], which are complementary to our

technique.

Expanded enclavememory. Intel has recently announced

a newer version of SGX (SGX2 [38]) which allows a larger

EPC size. The Intel SGX Card [15] has also been announced

that it allows additional EPC (up to 128 MB per card) and

trusted processors by plugging it into a PCIe slot of a server

machine. Although these technologies alleviate to a certain

extent the memory problem of DL prediction, we argue that

they do not fundamentally solve this problem as the EPC

must be limited to a certain size regardless (e.g., multiple

GB). For a production DL prediction system with SGX that

receives many requests for a short time period, multiple GB

of EPC may still be insufficient and require secure paging to

host many concurrent enclaves due to their large memory

footprints. In this regard, the design of Vessels is applicable

to future SGX technologies with a larger EPC capacity to

improve the performance and scalability of a confidential DL

prediction system.

11 CONCLUSION

Despite the strong security that Intel SGX provides, cur-

rent DL prediction systems with SGX suffer from significant

performance overhead and scalability issues due to memory-

intensive DL computation. In light of this problem, we have

conducted a systematic study on the current DL prediction

systems and discovered a paradigm of inefficiency that causes

the issues. Our findings in turn enabled us to design a novel

system, Vessels, that overcomes the limitation and provides

highly efficient DL predictionwith full SGX protection. In our

experiments, Vessels eliminated around 90% of the memory

footprint and reduced the prediction latency by an average of

58% compared to a baseline SGX system which has no func-

tionality and accuracy loss. Our evaluation with multiple

concurrent enclaves showed that Vessels can handle practi-

cal workload with high scalability (195% higher throughput

than the baseline on average), demonstrating its usability in

production DL prediction on the cloud.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their valuable feed-

back. This work was largely done while Kyungtae Kim was

an intern under the supervision of Chung Hwan Kim at NEC

Laboratories America. Chung Hwan Kim is the correspond-

ing author of this paper. Any opinions, findings, conclusions,

or recommendations expressed in this material are those of

the authors and do not necessarily reflect the views of their

employers.

REFERENCES
[1] 2017. Deep Learning Model Convertors. https://github.com/ysh329/

deep-learning-model-convertor.

[2] 2017. TF Trusted. https://github.com/dropoutlabs/tf-trusted.

[3] 2017. Top 5 Cloud Security related Data Breaches! https:

//www.cybersecurity-insiders.com/top-5-cloud-security-related-

data-breaches/.

[4] 2018. Asylo: An open and flexible framework for enclave applications.

https://asylo.dev/.

[5] 2019. Deep Learning on AWS. https://aws.amazon.com/deep-

learning/.

[6] 2019. Deep Learning VM | Google Cloud. https://cloud.google.com/

deep-learning-vm/.

[7] 2019. Human Error Often the Culprit in Cloud Data Breaches.

https://www.wsj.com/articles/human-error-often-the-culprit-in-

cloud-data-breaches-11566898203.

474

SoCC ’20, October 19–21, 2020, Virtual Event, USA K. Kim, C. Kim, J. Rhee, X. Yu, H. Chen, D. Tian, B. Lee

[8] 2019. Machine Learning Service | Microsoft Azure. https://azure.

microsoft.com/en-us/services/machine-learning-service/.

[9] 2019. TensorFlow Lite. https://www.tensorflow.org/lite.

[10] 2020. AWS SageMaker Neo. https://aws.amazon.com/sagemaker/neo/.

[11] 2020. IBMCloudData Shield. https://www.ibm.com/cloud/data-shield.

[12] 2020. MS Azure Confidential Computing. https://azure.microsoft.com/

en-us/solutions/confidential-compute/.

[13] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,

Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,

Michael Isard, et al. 2016. Tensorflow: A system for large-scale machine

learning. In 12th USENIX Symposium on Operating Systems Design and

Implementation (OSDI ’16). 265–283.

[14] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre

Martin, Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan

O’Keeffe, Mark L. Stillwell, David Goltzsche, Dave Eyers, Rüdiger

Kapitza, Peter Pietzuch, and Christof Fetzer. 2016. SCONE: Secure

Linux Containers with Intel SGX. In 12th USENIX Symposium on Oper-

ating Systems Design and Implementation (OSDI ’16). Savannah, GA,

689–703.

[15] Somnath Chakrabarti, MatthewHoekstra, Dmitrii Kuvaiskii, andMona

Vij. 2019. Scaling Intel Software Guard Extensions Applications with

Intel SGX Card. In Proceedings of the 8th International Workshop on

Hardware and Architectural Support for Security and Privacy (HASP

’19).

[16] Chia che Tsai, Donald E. Porter, and Mona Vij. 2017. Graphene-SGX:

A Practical Library OS for Unmodified Applications on SGX. In 2017

USENIX Annual Technical Conference (USENIX ATC ’17). Santa Clara,

CA, 645–658.

[17] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang

Lin, and Ten H Lai. 2019. Sgxpectre: Stealing intel secrets from sgx

enclaves via speculative execution. In 2019 IEEE European Symposium

on Security and Privacy (EuroS&P). IEEE, 142–157.

[18] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. IACR

Cryptology ePrint Archive 2016, 086 (2016), 1–118.

[19] Tu Dinh Ngoc, Bao Bui, Stella Bitchebe, Alain Tchana, Valerio Schi-

avoni, Pascal Felber, and Daniel Hagimont. 2019. Everything You

Should Know About Intel SGX Performance on Virtualized Systems.

In Abstracts of the 2019 SIGMETRICS/Performance Joint International

Conference on Measurement and Modeling of Computer Systems (SIG-

METRICS ’19). 77–78.

[20] Jonathan Frankle and Michael Carbin. 2018. The lottery ticket hy-

pothesis: Finding sparse, trainable neural networks. arXiv preprint

arXiv:1803.03635 (2018).

[21] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. 2015. Model

inversion attacks that exploit confidence information and basic coun-

termeasures. In Proceedings of the 22nd ACM SIGSAC Conference on

Computer and Communications Security. ACM, 1322–1333.

[22] Matthew Fredrikson, Eric Lantz, Somesh Jha, Simon Lin, David Page,

and Thomas Ristenpart. 2014. Privacy in pharmacogenetics: An end-

to-end case study of personalized warfarin dosing. In 23rd USENIX

Security Symposium (USENIX Security ’14). 17–32.

[23] Zhongshu Gu, Heqing Huang, Jialong Zhang, Dong Su, Hani

Jamjoom, Ankita Lamba, Dimitrios Pendarakis, and Ian Molloy. 2018.

YerbaBuena: Securing Deep Learning Inference Data via Enclave-based

Ternary Model Partitioning. arXiv preprint arXiv:1807.00969 (2018).

[24] Song Han, Huizi Mao, and William J Dally. 2015. Deep compression:

Compressing deep neural networks with pruning, trained qare two

popular schemesouantization and huffman coding. arXiv preprint

arXiv:1510.00149 (2015).

[25] Song Han, Jeff Pool, John Tran, andWilliam Dally. 2015. Learning both

weights and connections for efficient neural network. In Advances in

neural information processing systems. 1135–1143.

[26] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep

residual learning for image recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition. 770–778.

[27] Sanghyun Hong, Pietro Frigo, Yigitcan Kaya, Cristiano Giuffrida, and

Tudor Dumitras. 2019. Terminal Brain Damage: Exposing the Graceless

Degradation in Deep Neural Networks Under Hardware Fault Attacks.

In 28th USENIX Security Symposium (USENIX Security 19). Santa Clara,

CA, 497–514.

[28] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Wein-

berger. 2017. Densely connected convolutional networks. In Proceed-

ings of the IEEE conference on computer vision and pattern recognition.

4700–4708.

[29] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew

Tang, Andrew Howard, Hartwig Adam, and Dmitry Kalenichenko.

2017. Quantization and Training of Neural Networks for Efficient

Integer-Arithmetic-Only Inference. arXiv preprint arXiv:1712.05877v1

(2017).

[30] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew

Tang, Andrew Howard, Hartwig Adam, and Dmitry Kalenichenko.

2018. Quantization and training of neural networks for efficient integer-

arithmetic-only inference. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition. 2704–2713.

[31] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan

Long, Ross Girshick, Sergio Guadarrama, and Trevor Darrell. 2014.

Caffe: Convolutional Architecture for Fast Feature Embedding. arXiv

preprint arXiv:1408.5093 (2014).

[32] Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor

Mudge, Jason Mars, and Lingjia Tang. 2017. Neurosurgeon: Collabora-

tive Intelligence Between the Cloud and Mobile Edge. In Proceedings

of the Twenty-Second International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS ’17).

[33] Alex Krizhevsky, Ilya Sutskever, and Geoffrey EHinton. 2012. Imagenet

classification with deep convolutional neural networks. In Advances

in neural information processing systems. 1097–1105.

[34] Roland Kunkel, Do Le Quoc, Franz Gregor, Sergei Arnautov, Pramod

Bhatotia, and Christof Fetzer. 2019. TensorSCONE: A Secure Tensor-

Flow Framework using Intel SGX. arXiv preprint arXiv:1902.04413

(2019).

[35] Joshua Lind, Christian Priebe, Divya Muthukumaran, Dan O’Keeffe,

Pierre-Louis Aublin, Florian Kelbert, Tobias Reiher, David Goltzsche,

David Eyers, Rüdiger Kapitza, et al. 2017. Glamdring: Automatic Ap-

plication Partitioning for Intel SGX. In 2017 USENIX Annual Technical

Conference (USENIX ATC ’17). 285–298.

[36] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai,

Weihang Wang, and Xiangyu Zhang. 2018. Trojaning attack on neural

networks. In Proceedings of the 25th Network and Distributed System

Security Symposium (NDSS 2018).

[37] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,

Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazel-

wood. 2005. Pin: Building Customized ProgramAnalysis Tools with Dy-

namic Instrumentation. In Proceedings of the 2005 ACM SIGPLAN Con-

ference on Programming Language Design and Implementation (Chicago,

IL, USA) (PLDI ’05). 11.

[38] Frank McKeen, Ilya Alexandrovich, Ittai Anati, Dror Caspi, Simon

Johnson, Rebekah Leslie-Hurd, and Carlos Rozas. 2016. Intel Soft-

ware Guard Extensions (Intel SGX) Support for Dynamic Memory

Management Inside an Enclave. In Proceedings of the Hardware and

Architectural Support for Security and Privacy 2016 (HASP ’16).

[39] Dirk Merkel. 2014. Docker: lightweight linux containers for consistent

development and deployment. Linux journal 2014, 239 (2014), 2.

[40] Kit Murdock, David Oswald, Flavio D Garcia, Jo Van Bulck, Daniel

Gruss, and Frank Piessens. 2020. Plundervolt: Software-based Fault

475

Vessels: Efficient and Scalable Deep Learning Prediction on Trusted Processors SoCC ’20, October 19–21, 2020, Virtual Event, USA

InjectionAttacks against Intel SGX. In 2020 IEEE Symposium on Security

and Privacy (SP ’20).

[41] Olga Ohrimenko, Felix Schuster, Cédric Fournet, Aastha Mehta, Se-

bastian Nowozin, Kapil Vaswani, and Manuel Costa. 2016. Oblivious

multi-party machine learning on trusted processors. In 25th USENIX

Security Symposium (USENIX Security ’16). 619–636.

[42] Meni Orenbach, Andrew Baumann, and Mark Silberstein. 2020. Au-

tarky: closing controlled channels with self-paging enclaves. In Pro-

ceedings of the Fifteenth European Conference on Computer Systems.

1–16.

[43] Meni Orenbach, Pavel Lifshits, Marina Minkin, and Mark Silberstein.

2017. Eleos: ExitLess OS services for SGX enclaves. In Proceedings of

the Twelfth European Conference on Computer Systems. ACM, 238–253.

[44] Sandro Pinto and Nuno Santos. 2019. Demystifying Arm TrustZone: A

Comprehensive Survey. ACM Computing Surveys (CSUR) 51, 6 (2019),

130.

[45] Minghai Qin, Chao Sun, and Dejan Vucinic. 2017. Robustness of Neural

Networks against Storage Media Errors. (09 2017).

[46] Joseph Redmon. 2013–2016. Darknet: Open Source Neural Networks

in C. http://pjreddie.com/darknet/.

[47] Joseph Redmon and Ali Farhadi. 2018. Yolov3: An incremental im-

provement. arXiv preprint arXiv:1804.02767 (2018).

[48] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev

Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,

Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. 2015. ImageNet

Large Scale Visual Recognition Challenge. International Journal of

Computer Vision (IJCV) 115, 3 (2015), 211–252.

[49] Fahad Shaon,Murat Kantarcioglu, Zhiqiang Lin, and Latifur Khan. 2017.

SGX-BigMatrix: A practical encrypted data analytic framework with

trusted processors. In Proceedings of the 2017 ACM SIGSAC Conference

on Computer and Communications Security. ACM, 1211–1228.

[50] Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and Michael K Reiter.

2016. Accessorize to a crime: Real and stealthy attacks on state-of-the-

art face recognition. In Proceedings of the 2016 ACM SIGSAC Conference

on Computer and Communications Security. ACM, 1528–1540.

[51] Karen Simonyan and Andrew Zisserman. 2014. Very deep convo-

lutional networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556 (2014).

[52] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and

Zbigniew Wojna. 2016. Rethinking the inception architecture for

computer vision. In Proceedings of the IEEE conference on computer

vision and pattern recognition. 2818–2826.

[53] Meysam Taassori, Ali Shafiee, and Rajeev Balasubramonian. 2018.

VAULT: Reducing paging overheads in SGX with efficient integrity

verification structures. In ACM SIGPLAN Notices, Vol. 53. ACM, 665–

678.

[54] Shruti Tople, Karan Grover, Shweta Shinde, Ranjita Bhagwan, and

Ramachandran Ramjee. 2018. Privado: Practical and secure DNN

inference. arXiv preprint arXiv:1810.00602 (2018).

[55] Florian Tramer and Dan Boneh. 2018. Slalom: Fast, verifiable and

private execution of neural networks in trusted hardware. arXiv

preprint arXiv:1806.03287 (2018).

[56] Peter M VanNostrand, Ioannis Kyriazis, Michelle Cheng, Tian Guo,

and Robert J Walls. 2019. Confidential Deep Learning: Executing Pro-

prietary Models on Untrusted Devices. arXiv preprint arXiv:1908.10730

(2019).

[57] Simon Wiedemann, Klaus-Robert Müller, and Wojciech Samek. 2019.

Compact and computationally efficient representation of deep neural

networks. IEEE transactions on neural networks and learning systems

(2019).

[58] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He.

2017. Aggregated residual transformations for deep neural networks.

In Proceedings of the IEEE conference on computer vision and pattern

recognition. 1492–1500.

476

