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Abstract
Robotic vehicles (RVs) are being adopted in a variety of
application domains. Despite their increasing deployment,
many security issues with RVs have emerged, limiting their
wider deployment. In this paper, we address a new type of
vulnerability in RV control programs, called input validation
bugs, which involve missing or incorrect validation checks
on control parameter inputs. Such bugs can be exploited to
cause physical disruptions to RVs which may result in mis-
sion failures and vehicle damages or crashes. Furthermore,
attacks exploiting such bugs have a very small footprint: just
one innocent-looking ground control command, requiring no
code injection, control flow hijacking or sensor spoofing. To
prevent such attacks, we propose RVFUZZER, a vetting sys-
tem for finding input validation bugs in RV control programs
through control-guided input mutation. The key insight be-
hind RVFUZZER is that the RV control model, which is the
generic theoretical model for a broad range of RVs, provides
helpful semantic guidance to improve bug-discovery accuracy
and efficiency. Specifically, RVFUZZER involves a control
instability detector that detects control program misbehavior,
by observing (simulated) physical operations of the RV based
on the control model. In addition, RVFUZZER steers the input
generation for finding input validation bugs more efficiently,
by leveraging results from the control instability detector as
feedback. In our evaluation of RVFUZZER on two popular
RV control programs, a total of 89 input validation bugs are
found, with 87 of them being zero-day bugs.

1 Introduction

Robotic vehicles (RVs), such as commodity drones, are a
type of cyber-physical system for autonomous transportation.
They are typically equipped with a computing board with
control hardware (e.g., micro-controller) and software (e.g.,
real-time control program). The on-board control program
continuously senses the vehicle’s physical state (e.g., position
and velocity) and actuates the motors to control the vehicle’s

movement to accomplish a given mission. RVs have emerged
in various application domains such as commercial, industrial,
entertainment, and law enforcement. For instance, logistics
companies (e.g., USPS, DHL, and Amazon) have introduced
drone delivery services to meet the rapidly growing demand
in e-commerce [6, 10, 13, 27].

With their increasing adoption in real-world applications,
RVs are facing threats of cyber and cyber-physical attacks that
exploit their attack surface. More specifically, an RV’s attack
surface spans multiple aspects, such as (1) physical vulnerabil-
ities of its sensors that enable external sensor spoofing attacks
[72, 77, 80]; (2) traditional “syntactic” bugs in its control pro-
gram (e.g., memory corruption bugs) that enable remote or tro-
janed exploits [75]; and (3) control-semantic bugs in its con-
trol program that enable attacks via remote control commands.
For attacks exploiting (1) and (2), there have been research
efforts in defending against them [30, 38, 40, 50, 52, 70, 76];
whereas those exploiting (3) have not received sufficient atten-
tion. As a result, the RV’s attack surface in the aspects of (1)
and (2) is expected to get smaller, which may prompt attackers
to increasingly look at the control-semantic vulnerabilities for
new exploits.

In this paper, we focus on an important type of control-
semantic bugs in RV control programs, called input validation
bugs. An input validation bug involves an incorrect or missing
validity check on a control parameter-change input. Such an
input is provided to the control program via a remote control
command, which could trigger RV controller malfunction and
ultimately lead to physical impacts on the vehicle, such as
mission disruption, vehicle instability, or even vehicle dam-
age/crash. Finding input validation bugs is a new research
problem because they are largely orthogonal to the traditional
“syntactic” bugs (e.g., buffer overflow and use-after-free bugs)
which can be detected by existing software testing/fuzzing
techniques.

Input validation bugs, on the other hand, are created se-
mantically via incorrect setting of control parameters. In an
RV, the control program can be configured through control
parameters, which are adjustable numerical inputs that de-
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termine certain aspects of the control function’s behavior
(e.g., controller gain and default flight speed). We can further
categorize input validation bugs into two sub-categories: (1)
Incorrect or missing parameter range checks in the control
program, which would accept illegitimate setting of control
parameter values, are called range implementation bugs. (2)
Incorrect specification of control parameter ranges, even if
correctly implemented, may cause RV controller malfunction.
We call such specification-level errors (implemented in the
control program) range specification bugs.

Most RVs have a remote control interface [21] for opera-
tors to set or adjust control parameters during a flight. Un-
fortunately, such an interface can be leveraged by attackers
[9,55,67,68] to exploit input validation bugs and deliberately
mis-configure certain control parameters. As an example (de-
tails in Section 6.3.3), an RV control program allows operators
to dynamically adjust a parameter for the vehicle’s angular
control and suggests a range of valid values in its specifi-
cation. However, the range is erroneously determined and
implemented. Knowing this bug, an attacker can issue a mali-
cious command to reset the parameter using an illegitimate
value that falls into the “valid” range, consequently crashing
the vehicle.

Testing RV control programs to find input validation bugs
is challenging. Popular RV control software (e.g., ArduPi-
lot [15], PX4 [24], and Paparazzi [23]) supports many differ-
ent RV models (e.g., quadcopters and ground rovers) with a
large number of hardware, software and control configuration
options. Generating accurate control parameter value ranges
requires thorough testing of hundreds of control parameters
for each RV model. With the growing number of RV models
supported by control software, such testing is increasingly dif-
ficult to scale and automate. To overcome this challenge, espe-
cially without assuming source code access, one might think
of leveraging automated black-box software testing methods,
such as fuzzing [14, 17, 19, 71]. However, traditional software
fuzzing techniques are not directly applicable to RV control
programs because: (1) With hundreds of configurable param-
eters, the control program has an extremely large input space
to explore and (2) there is no uniform and obvious condition
to automatically decide that a control program is malfunction-
ing. Many input validation bugs do not exhibit system-level
symptoms until certain control and physical conditions are
met at run-time.

Our solution to finding input validation bugs – without
control program source code – is motivated by the following
ideas: (1) The impacts of attacks exploiting input validation
bugs can be manifested by the victim vehicle’s control state;
and (2) such state can be efficiently reproduced by combining
the RV control program and a high-fidelity RV simulation
framework, which is readily available [7, 8].

Based on these ideas, we develop RVFUZZER, an auto-
mated RV control program testing system to find input val-
idation bugs. RVFUZZER supports input-driven testing of a

subject control program’s binary, which runs in an RV simu-
lator – for safety and efficiency. Unlike a traditional program
bug (e.g., a memory corruption or divide-by-zero bug) that
can result in an obvious program execution failure, automati-
cally determining if the control program is ill-behaving based
on the simulated vehicle’s physical state is not straightfor-
ward. To address the problem, RVFUZZER involves a control
instability detector based on a standard control stability mea-
surement formula [47] to detect vehicle control malfunction.
More importantly, RVFUZZER leverages this detector to quan-
tify control (in)stability as feedback to guide input mutation,
so that bugs can be found more efficiently by covering a large
portion of the input space in a reasonable number of test
runs. Our control-guided input mutation method is based on
the following control property: When RV control instability
starts to be observed while increasing (decreasing) the value
of a control parameter, further increase (decrease) of the pa-
rameter value will only maintain or intensify such instability
(Section 4.3.2). Finally, RVFUZZER mutates environmental
factors such as trajectory curve or wind condition during
testing, as attackers may leverage predictable environmental
factors as probabilistic attack-triggering conditions.

We have implemented a prototype of RVFUZZER and ap-
plied it to ArduPilot [15] and PX4 [24], which are two pop-
ular RV control software suites used in many commodity
RVs [32,45,58,69]. RVFUZZER finds a total of 89 input vali-
dation bugs that can cause RV control malfunction: Two of
them are known input validation bugs that were previously
patched by developers; whereas the remaining 87 bugs are
zero-day bugs which we have reported to the developers. In
response to our report, eight bugs have been confirmed and
seven of them have been patched. The contributions of our
work are as follows:

• We introduce input validation bugs, a new type of RV
control-semantic vulnerability that can be exploited by at-
tackers.

• We develop RVFUZZER, a control-guided program vetting
system to discover input validation bugs with safety, effi-
ciency, and automation.

• We apply RVFUZZER to two popular RV control software
suites and find 89 input validation bugs including 87 zero-
day bugs.

2 Background

RV Control Model The RV control model is the generic the-
oretical underpinnings that control the vehicle’s movements
and operations during its missions (e.g., flying in a trajectory
with multiple waypoints). The RV’s movements are along its
six degrees of freedom (6DoF), which include the x, y, and
z-axes for movement and the roll, pitch, and yaw for rotation
(Fig. 1). The control model consists of multiple controllers,
each for a specific degree of the 6DoF. For example, the x-axis
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Figure 1: An RV’s six degrees of freedom (6DoF).
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Figure 2: The x-axis controller (with three primitive controllers).

controller is shown in Fig. 2.
Inside the x-axis controller, there are three primitive con-

trollers in a cascade, which are responsible for controlling the
vehicle’s position, velocity, and acceleration along the x-axis,
respectively. Each primitive controller takes two state inputs:
a reference state (r(t)) computed by its upstream primitive
controller; and an observed state (x(t)) reported by sensors.
The goal of the controller is to keep the observed state close
to the reference state, via its core function of control state sta-
bilization. The output of the function is the reference state for
its downstream primitive controller. Each primitive controller
has multiple adjustable parameters and accepts high-level
mission directives (e.g., change of target location or speed).

Overall the RV control model involves complex depen-
dencies between the 6DoF controllers, each having multiple
parameters and accepting mission directives. Moreover, the
controllers, sensors, and the vehicle’s physical operations (e.g.,
those of motors) create a feedback loop, which enables the
periodic, iterative working of the controllers.
RV Control Program An RV control program implements
the RV control model. Correspondingly, it involves the fol-
lowing main modules: (1) a sensor module to collect sensor
inputs (e.g., from GPS, inertial measurement unit, etc.) for
periodic vehicle state observation, (2) a controller module to
generate control output based on current mission, reference
state, and sensor input, and (3) a mission module to interpret
mission directives and execute them. These modules execute
iteratively in the periodic control epochs.

During a flight, the RV communicates with a ground control
station (GCS), which may issue a variety of GCS commands
to the control program. Many of those commands allow RV
operators to dynamically adjust the controller and mission
parameters. We note that such a dynamic parameter change
may be necessary to improve vehicle control performance
(e.g., enhancing stability), in response to mission dynamics
such as payload change and non-trivial external disturbances.

In addition to the control and communication functions,
most RV control programs have a run-time control state log-

ging function, for record-keeping and troubleshooting pur-
poses. Real-world commodity RVs (e.g., Intel Aero [18],
3DR IRIS+ [12], and DJI drone series [16]), as well as their
simulators, log in-flight control states in persistent storage.
RVFUZZER leverages such logs for automatic determination
of controller malfunction.

Control Parameters Because of the complexity and gen-
erality of RV control model and program, a large number
(hundreds) of configurable parameters exist in the control
program. Many of them are dynamically adjustable at run-
time via the GCS command interface. For example, in the
ArduPilot software suite [15], there are 247 configurable con-
trol parameters, including 111 parameters for the x-, y-axis
controller, 119 for the z-axis controller, 29 for the roll con-
troller, 29 for the pitch controller, 30 for the yaw controller,
103 for motor control, and 40 for mission specification. We
note that, while the total number of the parameters is 247,
some of the parameters are shared by multiple controllers.
When receiving a GCS command to adjust one of these pa-
rameters, the control program is supposed to perform an input
validity check to determine if the new value is within the safe
range of that parameter. Unfortunately, such a check may be
missing or based on an erroneous value range.

3 Attack Model

Attack Model and Assumptions Attacks that exploit input
validation bugs are characterized as follows: Knowing an ad-
justable control parameter with incorrect or missing range
check logic in the control program1, the attacker concocts
and issues a seemingly innocent – but actually malicious –
parameter-change GCS command to the victim RV. With-
out correct input validation, the illegitimate parameter value
will be accepted by the control program and cause at least
one of the RV’s 6DoF controllers to malfunction – either im-
mediately or at a later juncture, inflicting physical impacts
on the RV. When planning an attack, the attacker may also
opportunistically exploit a certain environmental condition
(e.g., strong wind) under which a parameter-change command
would become dangerous. For example, he/she might wait for
the right wind condition (e.g., by following weather forecast)
to launch an attack with high success probability. Such a case
will be presented in Section 6.3.3.

The attacker can be either an external attacker or an insider
threat. In the case of an external attacker, we assume that
he/she is able to perform GCS spoofing to issue the malicious
command, which is justified by the known vulnerabilities
in the wireless/radio communication protocols between RV
and GCS [9, 55, 67, 68, 78]. In the case of an insider threat,
we assume that the insider is a rogue RV operator (not a
developer), who does not have access to control program

1The attacker may acquire such knowledge via a program vetting tool
(such as RVFUZZER).
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source code and cannot update the control program firmware.

Attack Model Justifications Our attack model is realistic
(and attractive) to attackers for the following reasons: (1) Such
an attack incurs a very small footprint – just one innocent-
looking command, without requiring code injection/trojaning,
memory corruption, or sensor/GPS spoofing; (2) The attack
can still be launched even after the control program has been
hardened against traditional software exploits [1,2,39,52]; (3)
The attack looks like an innocent “accident” because the ma-
licious parameter value passes the control program’s validity
check. In some cases (i.e., range specification bugs), it is even
in the valid range set in the control program’s specification.

Why would the attacker bother to manipulate control pa-
rameter values, instead of just taking control of, or crashing
the vehicle? A key observation provides the answer: If the
attacker is not aware of – and hence does not manipulate –
illegitimate-but-accepted control parameter values, it would
actually not be easy to disrupt or crash an RV with minimum
footprint2. This is because both the RV control program and
control model already achieve a level of robustness for the
RV to resist being commanded into instability or danger: The
control program can identify and reject many illegitimate
commands; and the control model can filter or mitigate the
impacts of some commands that escape the control program’s
check [11, 48]. Moreover, an internal attacker is also moti-
vated to exploit illegitimate control parameter values that are
erroneously considered normal in the RV’s specification (i.e.,
range specification bugs), as the attacker could evade attack in-
vestigation by claiming that he/she was following RV control
specification when issuing the command in question.

We do acknowledge that there exist scenarios where at-
tackers can successfully launch attacks without exploiting
input validation bugs. For example, an insider could hijack an
RV by changing its trajectory, when working alone without a
co-operator (who might otherwise catch the attack in action).

4 RVFUZZER Design

In this section, we present the design of RVFUZZER. We first
give an overview of RVFUZZER’s architecture (Section 4.1)
and then present detailed design of two key components of
RVFUZZER: (1) the control-guided instability detector that
monitors the vehicle’s control state to detect controller mal-
function (Section 4.2) and (2) the control-guided input muta-
tor that generates control program inputs for efficient program
testing (Section 4.3).

4.1 Overview
RVFUZZER is designed to (1) detect physical instability of
the RV during testing and (2) generate test inputs iteratively to

2The minimum footprint would help avoid detection before the attack
succeeds.
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Figure 3: Overview of RVFUZZER.

achieve high testing efficiency and coverage. Fig. 3 presents
an overview of RVFUZZER, which consists of four main com-
ponents: a GCS program, the subject control program, a sim-
ulator, and a control-guided tester – the core component of
RVFUZZER. The roles of the first three components are as fol-
lows: the GCS software is responsible for issuing RV control
parameter-change commands; the subject control program, as
the testing target, controls the operations of the (simulated)
RV; and the simulator emulates the physical vehicle and its
operating physical environment. We note that (1) the GCS
and RV control programs are from real-world GCS and RV;
and (2) our simulators [7, 8] are widely adopted for robotic
vehicle design and testing.

RVFUZZER’s control-guided tester consists of two sub-
modules: (1) control instability detector and (2) control-
guided input mutator. During testing, the control instability
detector detects non-transient physical disturbances of the
target RV (e.g., crash and deviation), as indication of control
program execution anomaly caused by an input validation
bug. The control-guided input mutator is a feedback-driven
input mutator for efficient mutation of control parameter and
environmental factor values. Using the results of the control
instability detector as feedback, the mutator adaptively mu-
tates control parameter values via a well-defined RV control
interface (i.e., GCS commands created and issued by the GCS
software). In addition, it mutates environmental factors (e.g.,
wind) by re-configuring the simulator.

4.2 Control Instability Detector
The goal of the control instability detector is to continuously
monitor RV control state to determine if a specific GCS com-
mand has induced non-transient physical disturbance. Such a
physical disturbance can be considered as an indication of an
input validation bug. We note that input validation bugs may
not lead to program crash, a common indicator of traditional
bugs (e.g., memory corruption).

We first define a rule to detect physical disturbances, which
is tailored for input validation bugs. We then describe the
mechanism to monitor the RVFUZZER’s 6DoF control states
for detecting such a disturbance.

Indication of Control State Deviation Exploitation of an
input validation bug will cause an RV’s failure to stabilize
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its control states and/or complete its mission. To accurately
detect bug-induced physical disturbance, RVFUZZER must be
equipped with the capability of control state deviation detec-
tion. Among the possible physical disturbances experienced
by an RV, there are two types of control state deviation: (1)
observed state deviation and (2) reference state deviation. Ac-
cordingly, we define a detection rule to determine if one of
the two types of control state deviation has occurred.

The first type – observed state deviation – is the case where
a controller (e.g., the primitive x-axis velocity controller) fails
to stabilize its observed state (x(t)) according to its reference
state (r(t)). In the theoretical control model, a controller al-
ways tries to keep x(t) close to r(t) (Section 2). Consequently,
if the difference between x(t) and r(t) keeps increasing and
exceeds a certain threshold, the observed state will be con-
sidered deviating from the reference state. To quantify the
observed state deviation, we leverage the integral absolute
error (IAE) formula [47] which is widely used as a stability
metric in control systems.

deviation(t) =
∫ t+w

t

|r(s)− x(s)|
w

ds (1)

Given a time window w and starting from a certain time
instance t, the formula quantifies the level of deviation
(deviation(t)). If deviation(t) is larger than a pre-determined
threshold τ, our rule will determine that there is a control state
deviation starting at t. We will describe how to experimentally
determine w and τ for each 6DoF control state in Appendix A.

The second type – reference state deviation – is the case
where an RV deviates from its given mission. A controller is
expected to adjust its reference state to track its mission. If
a controller fails to do that, it is considered malfunctioning.
To detect such a deviation, our rule will check whether the
difference between the reference state and the mission target
becomes persistently greater than a threshold.

We note that our detection rule only considers non-transient
control state deviation. An RV may experience transient con-
trol state deviation during normal operation but can effectively
recover from it, thanks to the robustness features of the con-
trollers such as the extended Kalman filter [46, 51, 60].

Control Instability Detection We now apply our “observed-
reference” and “reference-mission” deviation determination
rule to detect control instability. During a test mission, the
control program readily logs all its 6DoF control states (Sec-
tion 2). The log data can be retrieved by the GCS software,
which will then be accessed by the Control Instability Detec-
tor and applied to the evaluation of the detection rule (Fig.3).
Note that the control states include those of the three primitive
controllers (for position, velocity, and acceleration control)
inside each 6DoF controller; and each primitive controller
logs its observed, reference and mission states. As such, the
Control Instability Detector can apply the detection rule to
detect control state deviation at any primitive controller.

4.3 Control-Guided Input Mutator

A software testing system needs to judiciously generate pro-
gram inputs to achieve high bug coverage while reducing the
number of the subject program’s test runs. In other words,
the set of generated testing inputs should be representative to
produce the same or similar results when other untested inputs
were provided to the program. We first define RVFUZZER’s
input mutation space (i.e., types and value ranges of dynam-
ically adjustable control parameters). We then describe our
control-guided input mutation strategy to generate representa-
tive testing inputs, with consideration of environmental factors
that affect the RV operation and control.

Our input generation method considers both control pa-
rameters and environmental factors3. For control parameters,
we first define their value mutation spaces (Section 4.3.1).
We then present the feedback-driven input mutator which
generates a reduced set of control parameter-change test in-
puts (Section 4.3.2). The mutator also mutates the external
environmental factors and tests the control program under
different combinations of input control parameter values and
environment factor values.

4.3.1 Control Parameter Mutation Space

The input mutation space of the subject control program con-
sists of: (1) the list of dynamically adjustable control parame-
ters, (2) the range of all possible values for each parameter,
and (3) the default value of each parameter.

The list of control parameters is obtained from the specifi-
cation of control program and the GCS command interface.
We note that this is public information even for a close-source
control program. The three most popular control software
suites (i.e., ArduPilot [15], PX4 [24], and Paparazzi [23])
all support a common parameter tuning interface defined in
MAVLink [21], the de facto protocol for RV-GCS communi-
cations.

The value ranges of control parameters can be decided (1)
by the data type of the control parameter and (2) by polling
the control program itself. For a control parameter, its data
type generically sets its value range. For example, the range
of a 32-bit integer parameter is [−231,231−1]. Interestingly,
the ranges of many control parameters can be narrowed by
polling the control program. This can be done by first sending
a parameter-change command with a very large/small value;
and then querying the actual value of that parameter, which
now becomes the maximum/minimum value of the parameter
defined in the control program. While the possibility of such
a probe is specific to control program implementation, we do
observe such implementation logic in ArduPilot and PX4.

The mutator also selects a default value within the range
of each control parameter. Such a default value will be used

3Environmental factors are not program input but physical context in
which the RV operates.
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in the input space search during mutation (Section 4.3.2). We
note that the set of default values of control parameters is
normally made available by RV vendors (e.g., 3DR, DJI, and
Intel), as a guidance to RV users when tuning the control
parameters.

4.3.2 Feedback-Driven Parameter Input Mutator

RVFUZZER’s input mutator accepts two inputs: the control
parameter mutation space and the result of the Control Insta-
bility Detector from the previous run of the control program.
The output of the mutator is the testing input for the program’s
next run. The efficiency of the control program vetting pro-
cess depends on how well the mutated inputs are generated to
trigger input validation bugs without launching too many pro-
gram test runs with different inputs. To explain our mutation
strategy and methods, we first introduce the underlying intu-
ition of our strategy and then describe our feedback-driven
testing process with two steps: one-dimensional mutation and
multi-dimensional mutation.

Input Space Reduction Strategy The purpose of
RVFUZZER is to find vulnerable – i.e., illegitimate but ac-
cepted – values for each dynamically adjustable control pa-
rameter. However, it is infeasible to test all possible values
of a parameter. To improving testing efficiency, RVFUZZER
must be able to selectively skip certain ranges of parameter
values, if they lead to the same or similar outcome as the tested
values. The value range-skipping idea is feasible thanks to the
following observation: When control instability starts to be
observed while increasing (decreasing) the value of a control
parameter, further increase (decrease) of the parameter value
will only maintain or intensify the instability.

We note that the aforementioned observation is generally
valid. More specifically, in a control model, controllers and
filters can be lumped together as part of its dynamics. Based
on Root Locus [54], the trajectory of the loci always follows
some asymptote. Hence, the change of a parameter will cause
a monotonic change in stability. Sensor calibration can be
considered as a constant disturbance, which will cause system
response to degrade as the magnitude of the disturbance in-
creases. Mission parameters will have different effects: Some
can be grouped as part of the dynamics based on Root Locus;
Some others, such as angle limitations, could cause an exces-
sive response that introduces undesirable overshoot. This can
be viewed as an integral windup, with a larger limit causing a
larger overshoot.

Based on this observation, we propose two features for
the mutator. (1) It will report valid/invalid value ranges —
not individual values. Such a range will have a lower (min-
imum) and upper (maximum) bound. Any parameter value
outside the range will cause control instability. (2) The mu-
tator will be driven by feedback from the Control Instability
Detector (Section 4.2) to determine the next testing input.

Such feedback-driven mutation will be able to skip certain
parameter value ranges for efficiency.

One-dimensional Mutation In the first step of control
software vetting, RVFUZZER’s input mutator determines the
valid/invalid range for each control parameter independently.
The mutator isolates the impact of the target parameter on
the control state deviation by setting the values of all other
parameters to their default values.

We present the one-dimensional mutation procedure in
Algorithm 1. For each target control parameter, the mutator
determines the upper and lower bounds of the valid value
range by utilizing a mutation-based binary search method.
We elaborate the method (Algorithm 1) to find the upper
bound of the valid range as follows. We note that the mutator
follows a syntactically similar method to find the lower bound
of the valid range.

To find the upper bound, the mutator will iteratively launch
test runs, using the binary search method to set the next run’s
input value and to update the working range. It will set the ini-
tial min-limit of the working range as the default value of the
target parameter; the initial max-limit of the working range as
the maximum possible value of the target parameter (Section
4.3.1); and the initial input value as the mid-point between the
min-limit and max-limit values. Thereafter, in each run, the
mutator obtains the output of the Control Instability Detector
under the current input value, and updates the working range
in the next run by considering the following two cases based
on the detector’s output (Line 14).

• Case 1 (Line 17-18): If the mutator observes that the cur-
rent input value does not cause any deviation, it skips the
lower half of the working range in the next run and sets the
new min-limit as the current input value. This decision is
justified by our earlier observation on the monotonic prop-
erty of control instability. For the next run, the mutator will
again set the new input value as the mid-point between
min-limit and max-limit.

• Case 2 (Line 15-16): If the current input value leads to
control state deviation, the mutator concludes that there are
other values lower than the current input value which can
also cause deviation. Hence, for the next run, the mutator
will skip the upper half of the working range by setting
max-limit as the current input value and the new input value
as the mid-point between min-limit and max-limit.

We highlight that, after each run, the mutator skips the
values corresponding to one half of the working range. This
input space reduction strategy ensures that the mutator covers
all possible values of the target control parameter efficiently.
After determining the working range for the next run, the
mutator sets the input value for the next run as the mid-point of
the new working range (Line 19), following the binary search
method. The mutator continues the (detector) feedback-driven
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Algorithm 1 One-dimensional Mutation.
Input: Input mission (M), input parameter (P), test environmental factor (E), control
state deviation threshold set for all primitive controllers (τ)
Output: An invalid range for a target parameter (R)

1: function ONEDIMENSIONALMUTATION(M, P, E, τ) . Main function
2: Initialize R
3: R.max← ONEMUTATION(M,P,E,τ,U) . ’U’: Upper-bound search
4: R.min← ONEMUTATION(M,P,E,τ,L) . ’L’: Lower-bound search
5: return R . Return an invalid range of one parameter
6: function ONEMUTATION(M, P, E, τ, bound)
7: if bound =U then . ’U’ indicates an upper-bound search
8: {test,max-limit,min-limit}← {(P.Max−P.De f ault)/2,P.Max,P.De f ault}
9: else . ’L’ indicates a lower-bound search

10: {test,max-limit,min-limit}← {(P.De f ault−P.Min)/2,P.De f ault,P.Min}
11: MinDi f f ← 0
12: do
13: test ′← test . Store the testing value before mutation
14: Dev← RUNANDDEVIATIONCHECK(M,P, test,E,τ)
15: if (bound =U and Dev = True) or (bound = L and Dev = False) then
16: max-limit← test . Change the testing range
17: else
18: min-limit← test . Change the testing range
19: test← (max-limit +min-limit)/2 . Mutate the testing value
20: while |test ′− test|> MinDi f f . Check the exit condition
21: return GETINVALIDRANGE(test, test ′,bound,Dev)

search method, until the difference between the input values
in the current and the next runs is less than a pre-determined
threshold MinDi f f (Line 20). Finally, the mutator determines
the valid value range and the corresponding vulnerable value
range (i.e., invalid range) for the target control parameter.

Multi-dimensional Mutation RVFUZZER also performs a
more advanced form of input mutation: multi-dimensional
mutation, which finds extra invalid parameter value ranges
that one-dimensional mutation may not find. Such extra in-
valid parameter values are introduced because a target control
parameter may have dependencies on other parameters. In
other words, different (non-default) setting of such other pa-
rameters may expand the invalid range of the target parameter.

To test the impact of other parameters (Pothers), RVFUZZER
performs the multi-dimensional mutation for each target pa-
rameter (Ptarget ) as described in Algorithm 2. In this algorithm,
RVFUZZER utilizes the results from the one-dimensional mu-
tation (Algorithm 1) of all control parameters (Pall) (i.e., the
lower and upper bounds of their valid ranges). For the target
parameter, RVFUZZER sets the initial working range as its
valid value range obtained from one-dimensional mutation
(Line 2). Thereafter, the mutation of the values of the other
parameters (Line 8-15) and the target parameter (Line 18-21)
are performed recursively.

In each recursion, the value of each of the other parameters
is mutated among only three values: the default value, the
lower bound of its valid value range and the corresponding
upper bound (Line 11). We note that setting the values of
one/more of the other parameters to their lower/upper bound
values leads to an extreme scenario which can potentially
exacerbate the impact of the target parameter on the control
state deviation.

After setting the values of the other parameters (Line
18), the mutator follows a procedure similar to the one-

Algorithm 2 Multi-dimensional Mutation.
Input: Input mission (M), target testing input parameter (Ptarget ), a set of all input pa-
rameters including one-dimensional search results (PSall ), test environmental factor
(E), control state deviation threshold set for all primitive controllers (τ)
Output: An invalid range for a target parameter (R)

1: function MULTIDIMENSIONALMUTATION(M, Ptarget , E, PSall , τ) . Main
function

2: R← GETINVALIDRANGE(Ptarget ) . Results from the previous step
3: PSothers← PSall −{Ptarget} . A set of other parameters except for Ptarget
4: PSmut ← /0 . Initialize the mutated parameter set
5: R← DEPMUTATION(M,Ptarget ,E,PSothers,PSmut ,R,τ)
6: return R . Return a new invalid range
7: function DEPMUTATION(M, Ptarget , E, PSothers, PSmut , R, τ)
8: if PSothers 6= /0 then . Recursively mutate PSothers
9: Pmut ← PSothers.Pop()

10: PSmut ← PSmut ∪Pmut
11: for PV ∈ Pmut .Min,Pmut .De f ault,Pmut .max do
12: PSmut ← UPDATEMUTATEDVALUE(PSmut ,Pmut ,PV )
13: R← DEPMUTATION(M,Ptarget ,E,PSothers,PSmut ,τ)

14: else . Update the invalid range of Ptarget if all of PSothers are mutated
15: R← DEPTEST(M,Ptarget ,E,PSmut ,R,τ)
16: return R
17: function DEPTEST(M, Ptarget , E, PSmut , R, τ)
18: PARAMETERSET(PSmut ) . Configure parameters with values of PSmut
19: U pper← ONEMUTATION(M,Ptarget ,E,τ,U) . ’U’: Upper-bound search
20: Lower← ONEMUTATION(M,Ptarget ,E,τ,L) . ’L’: Lower-bound search
21: return UPDATEINVALIDRANGE(R,U pper,Lower)

dimensional mutation. It employs the mutation-based binary
search method to determine and update the lower and upper
bounds of the valid value range of the target parameter (Line
20-21). The new (in)valid range is then updated (Line 21).

In essence, as RVFUZZER mutates the values of multiple
control parameters together, it can identify additional values
of the target parameter that will cause control state deviation
under specific value setting of the other parameters. If such
invalid values lie outside the one-dimensional invalid value
range, the multi-dimensional mutation will conditionally ex-
pand the invalid value range to include those values, subject
to the setting of the other parameters. As such, the result of
the multi-dimensional mutation can be considered as an in-
complete set of constraints on the values of multiple control
parameters.

4.3.3 Environmental Factors

In real-world missions, the RV interacts with the physical
environment with external factors such as physical obstacles
and wind. Such factors influence RV’s control state and per-
formance. We note that an external factor (e.g., wind) could
make an otherwise valid parameter value cause control state
deviation. This means that such values can be exploited by
attackers. To detect such influence, RVFUZZER mutates and
simulates the impact of environmental factors along with
multi-dimensional mutation of parameter values. We catego-
rize the environmental factors into two types: geography and
disturbances.

Typical geographical factors of interest are obstacles en-
countered by an RV during its missions. The RV will need
to take actions to avoid such an obstacle. The actions may
entail changes in the parameter values to enable a change of
trajectory. This may expand the invalid range of the parameter
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values that will cause control state deviation. To expose such
input validation bugs, RVFUZZER defines and simulates RV
missions in which the RV needs to avoid obstacles via sudden,
sharp trajectory changes. An attack case triggered by obstacle
avoidance will be presented in Section 6.3.3.

External disturbances such as wind and turbulence may
also disrupt the RV’s operation. RVFUZZER simulates the
wind gusts and mutates the wind speed and direction based
on real-world wind conditions. Details of the wind factor
setup are given in Section 6.2.2. The attack case presented in
Section 6.3.3 also exploits the wind condition.

5 Implementation

To evaluate RVFUZZER experimentally, we have imple-
mented a prototype of RVFUZZER. The implementation de-
tails of its main components are described as follows.
Subject Control Programs We choose the quadcopter as
our subject vehicle as the quadcopter operates in all of the
6DoF and it is one of the most widely adopted types of
RVs [49, 62, 64]. We point out that the implementation of
RVFUZZER is not specific to a certain RV type or model as
RVFUZZER only needs the physical quantities (e.g., weight
and inertial parameters) and the corresponding simulator to
support a vehicle. This means that RVFUZZER can be recon-
figured to support other types of RVs, such as hexacopters
and rovers.

We apply RVFUZZER to vet two control programs that
both support the quadcopter: ArduPilot 3.5 and PX4 1.8. The
default vehicle control model supported by both programs is
that of the 3DR IRIS+ quadcopter [12]. All vetting experi-
ments (on both ArduPilot and PX4) are performed using a
desktop PC with quad-core 3.4 GHz Intel Core i7 CPU and
32 GB RAM running Ubuntu 64-bit.
Simulator To simulate the physical vehicle and environment,
we utilized the APM simulator [8] and Gazebo [7, 42, 53] for
ArduPilot and PX4, respectively. We note that RVFUZZER’s
control instability detection and input mutation functions can
easily inter-operate with these simulators via the interfaces
between the simulators and the control and GCS programs.
GCS Program We used QGroundControl [26] and
MAVProxy [22] as the ground control station software for
PX4 and ArduPilot, respectively.
Control-Guided Tester The control-guided tester is the
core component of RVFUZZER. It is written in Python 2.7.6
with 5,722 lines of code. To implement the key functions in
RVFUZZER, we leveraged the Pymavlink library [25], which
provides APIs to remotely control the RV via the MAVLink
communication protocol [21]. MAVLink is the de-facto com-
munication protocol for robotic vehicles, which is used not
only by ArduPilot and PX4, but also by other platforms such
as Paparazzi [23], DJI [16], and LibrePilot [20]. MAVLink
supports a wide range of GCS commands (e.g., for mission

assignment, run-time control state monitoring, and parameter
checking and adjustment) that are leveraged and tested by
RVFUZZER.

To test the control performance of the subject vehicle, we
adopted the AVC2013 [5] mission which is an official mis-
sion provided by ArduPilot and used in autonomous vehicle
competitions to test the control and mission execution capabil-
ities of RVs. To improve the testing efficiency of RVFUZZER,
we adjusted that mission by removing the overlapping flight
courses, reducing the distance between each pair of waypoints,
and increasing the vehicle’s velocity.

To classify and generate the bug discovery results, we lever-
age a list of dynamically adjustable control parameters pro-
vided by ArduPilot and PX4 [28, 29]. Such a list is usually
provided in the Extensible Markup Language (XML) format
in the source code and can be easily parsed.

6 Evaluation

We now present evaluation results from our experiments with
the RVFUZZER prototype. The three main questions that we
want to answer are: (1) How effective is RVFUZZER at find-
ing input validation bugs (Section 6.1); (2) How do different
input mutation schemes of RVFUZZER contribute to the dis-
covery of input validation bugs (Section 6.2); and (3) How
can RVFUZZER be applied to discover input validation bugs
that would otherwise be exploited to launch stealthy attacks
(Section 6.3).

6.1 Finding Input Validation Bugs
We present a summary of the input validation bugs discovered
by RVFUZZER from ArduPilot and PX4. These bugs are the
result of a 8-day, non-stop testing session running RVFUZZER
on the two control programs.

6.1.1 Classification of Input Validation Bugs

The validity of an input value of a control parameter is
checked based on the specified range that has been determined
and documented by developers during the development of the
control program. Our subject control programs (ArduPilot
and PX4) have the specified ranges of all the control param-
eters publicly available on their developer community web-
sites [28, 29]. Leveraging these public range specifications,
RVFUZZER found a number of input validation bugs through
the 8-hour testing session. We classify these input validation
bugs into two categories based on their root causes: range
implementation bugs and range specification bugs.
Range Implementation Bugs Assuming that the specified
valid range of a control parameter is correct, any value outside
the specified range should be caught and rejected by the con-
trol program. If the implementation of the control program
fails to enforce that, an out-of-range parameter value may
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Table 1: Summary of input validation bugs found by RVFUZZER

(RIB and RSB denote the number of range implementation and range
specification bugs, respectively).

Module Sub-module ArduPilot PX4
RIB RSB RIB RSB

Controller

x, y-axis position 1 0 1 1
x, y-axis velocity 2 1 1 1

z-axis position 1 0 1 1
z-axis velocity 1 0 1 0

z-axis acceleration 3 0 0 0
Roll angle 1 0 1 1

Roll angular rate 5 0 3 3
Pitch angle 1 0 1 1

Pitch angular rate 5 0 3 3
Yaw angle 1 0 2 2

Yaw angular rate 6 0 3 3
Motor 0 0 3 3

Sensor Inertia sensor 3 3 0 0

Mission

x, y-axis velocity 1 1 2 0
z-axis velocity 2 0 4 0

z-axis acceleration 2 0 0 0
Roll, Pitch 1 1 1 1

Total - 36 6 27 20

be maliciously provided and accepted by the program, caus-
ing control state deviations. This is the nature of the range
implementation bug which, based on our observation, arises
from a lack of or an incorrect implementation of range check
logic in the program. To discover range implementation bugs,
RVFUZZER employs the one-dimensional mutation strategy.
It mutates the value of each target parameter and issues the
parameter-change GCS command with the mutated value to
the control program. If the Control Instability Detector re-
ports a control state deviation, RVFUZZER will report a range
implementation bug associated with the target parameter.

Range Specification Bugs Ideally, the specified valid range
of a parameter should correctly scope the value of the parame-
ter. Unfortunately, this turns out not always the case. To reveal
such problems, RVFUZZER first performs one-dimensional
mutation and then performs multi-dimensional mutation on
each target parameter, determining its invalid value range that
will cause control state deviation. We observe that for some
control parameters, their valid value ranges are erroneously
specified by developers, allowing dangerous values in the
specified – and subsequently implemented – ranges. This is
the nature of the range specification bug. Based on our analy-
sis, such bugs exist because a control program enforces a fixed
valid value range for a control parameter, without considering
three critical factors: (1) the difference between hardware
models and configurations, (2) inter-dependencies between
control parameters, and (3) impact of environmental factors.
RVFUZZER reveals that the range of the valid input values
of a target parameter tends to “shrink” under these factors,
giving rise to range specification bugs.

6.1.2 Detection of Input Validation Bugs

Table 1 summarizes the range implementation bugs (RIB) and
range specification bugs (RSB) discovered by RVFUZZER in
ArduPilot and PX4. The detailed list of the 63 control parame-
ters that are affected by these bugs is presented in Appendix B.
For coherent presentation in Table 1, the control parameters
in each of the two control programs are categorized into three
modules (i.e., controller, sensor, and mission) and further into
their sub-modules. Table 1 shows that RVFUZZER detected
a total of 89 input validation bugs (42 bugs in ArduPilot and
47 bugs in PX4). We note that some of the control parameters
are associated with both range implementation and the range
specification bugs. Hence, the total number of input validation
bugs (89) is higher than the total number of affected control
parameters (63).

We highlight that only two of the 89 bugs discovered by
RVFUZZER were detected and correctly patched by the de-
velopers before we reported our results to them. Out of the
remaining 87 bugs, the developers have so far independently
confirmed 8 bugs and patched 7 of them. The remaining bugs
are under review. The delayed response of the developers
brings forth an important point: Compared to the traditional
“syntactic” bugs (e.g., buffer overflow), discovering, validating
and patching input validation bugs require more time and ef-
fort. This is because the exploitability of each input validation
bug must be fully verified under a spectrum of vehicle con-
figurations and operating environments. In such a scenario,
RVFUZZER can be utilized by developers as a helpful tool to
automate the discovery and confirmation of input validation
bugs.

6.1.3 Impact of Input Validation Bugs

We now detail the physical impacts (on the vehicle’s opera-
tion) of the attacks that exploit the bugs found by RVFUZZER.
We consider four levels of physical impact: crash, trajectory
deviation, unstable movement, and frozen control states. Ap-
pendix B presents possible physical impact(s) of attacks that
exploit each of the vulnerable control parameters. Here, we
summarize the results by analyzing the impact on the modules
of the control program. Specifically, we present the causality
of the bugs in a bottom-up fashion and assess its impact on
the control state deviation which is detected by RVFUZZER’s
Control Instability Detector.

Controller Module Among the control parameters related
to the controller module, RVFUZZER discovered 27 range im-
plementation bugs and 1 range specification bug in ArduPilot,
and 20 range implementation bugs and 19 range specification
bugs in PX4 (Table 1). These bugs can be used to maliciously
set invalid parameter values or exploit environmental factors,
which would directly affect the primitive controllers and cor-
rupt the control states in the 6DoF. For example, if one of
the control parameters related to the z-axis velocity is set to
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a value in the invalid range due to an input validation bug,
the manipulated parameter will corrupt the reference state of
the (downstream) z-axis acceleration. As a result, the z-axis
acceleration controller will attempt to bring its observed state
closer to the corrupted reference state, which will cause con-
trol instability of the vehicle. Such instability may eventually
lead to a crash.

Sensor Module For this module, while RVFUZZER found
3 range implementation bugs and 3 range specification bugs
in ArduPilot, it did not find any input validation bug in PX4
(Table 1). We note that the vulnerable control parameters of
the sensor module are related to either a sensor calibrator
or a sensor filter for noise/disturbance. While the calibrator
compensates for manufacturing errors in sensors and adjusts
the observed state accordingly, the filter smooths out the sen-
sor values and helps the controllers in robustly responding
to physical interactions [73]. Hence, if an invalid value is
assigned to a control parameter related to a sensor calibrator/-
filter due to an input validation bug, the primitive controller
that consumes the sensor values will compute a corrupted ob-
served state. Such corruption will also propagate to its output
reference state, and from there to other dependent primitive
controllers, leading to unstable movement of the vehicle.

Mission Module For this module, RVFUZZER discovered
6 range implementation bugs and 2 range specification bugs
in ArduPilot, and 7 range implementation bugs and 1 range
specification bug in PX4 (Table 1). Recall that this module
is responsible for setting the mission parameters (e.g., speed
and tilting angles) which define or adjust the vehicle’s mis-
sion. However, if a parameter related to the mission module
is manipulated with an invalid value by exploiting an input
validation bug, the corresponding controllers will generate
misguided reference states. Such mission corruption will mis-
lead one or more of the 6DoF controllers and prevent the
vehicle from fulfilling its intended mission (e.g., not moving
to the intended destination or at the intended speed), even if
the vehicle does not experience any immediate danger.

6.2 Effectiveness of Input Mutation

RVFUZZER employs the control-guided input mutation strat-
egy to generate control parameter value inputs and set environ-
mental factors. We evaluate the effectiveness of this mutation
strategy in enabling efficient discovery of input validation
bugs.

6.2.1 Control Parameter Mutation

RVFUZZER discovers the range implementation bugs using
the one-dimensional mutation strategy which detects the erro-
neous implementation of the parameter’s range check logic.
Through the extensive black-box-based (i.e., without source
code) testing of the control parameters, RVFUZZER discov-

ered a total of 63 range implementation bugs: 36 bugs in
ArduPilot and 27 bugs in PX4.

To detect the incorrectly specified ranges of the param-
eters and find the range specification bugs, RVFUZZER
employs one-dimensional mutation followed by the multi-
dimensional mutation strategy. We demonstrate the effective-
ness of RVFUZZER’s mutation strategies in discovering the
range specification bugs in Fig. 4, which presents the valid
and invalid value ranges (detected using one-dimensional and
multi-dimensional mutation) for the affected control parame-
ters.

One-dimensional Mutation RVFUZZER discovered a total
of 26 range specification bugs using one-dimensional muta-
tion: 6 bugs in ArduPilot and 20 bugs in PX4 (Fig. 4). For
example, for parameter MC_TPA_RATE_P in PX4, the speci-
fied range was between 0 and 1, and the default value was 0.
However, RVFUZZER detected control state deviations with
values between 0.1 and 1, and hence found 90% of the values
in the specified range belonging to the invalid range. We note
that almost 100% of the values in the specified range of the
three parameters, MC_PITCHRATE_FF, MC_ROLLRATE_FF and
MC_YAWRATE_FF, in PX4 are invalid. This is because, while
each of these parameters can be independently configured
with a wide range of input values, there is a smaller range
of values that are valid when the other parameters take their
default values.

Multi-dimensional Mutation Recall that the multi-
dimensional mutation further expands the invalid range of the
target parameter to include the additional values that cause
control state deviation under specific, non-default settings of
the other parameters. In Fig. 4, we observe that the multi-
dimensional mutation expands the invalid ranges of 10 out of
26 range specification bugs found using one-dimensional mu-
tation. For instance, RVFUZZER found that the invalid range
of the MC_ROLL_P parameter in PX4 was expanded from 1.7%
to 51.7% when multi-dimensional mutation was employed.
We highlight that for some parameters, RVFUZZER reported
a significant increase of invalid range with multi-dimensional
mutation. In particular, compared to the invalid ranges de-
tected using one-dimensional mutation, the invalid ranges of
the MC_PITCHRATE_MAX and MC_ROLLRATE_MAX parameters
in PX4 increased from 0.4% to 88.1% and from 0.1% to
87.9%, respectively. These results demonstrate that the multi-
dimensional mutation strategy can discover invalid values
of control parameters with stronger awareness of the inter-
parameter dependencies (discussed further in Section 8).

6.2.2 Environmental Factor Mutation

RVFUZZER further found that the invalid ranges of some con-
trol parameters expand when environmental conditions are
taken into account. This is important because the developers
may not completely consider the impact of various environ-
mental conditions when specifying the valid range of a pa-
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Figure 4: Invalid control parameter ranges discovered by RVFUZZER, normalized to the specified value ranges (1: One-dimensional mutation,
M: Multi-dimensional mutation). Percentage of invalid ranges (%) within the specified value ranges are noted at the top of the bars.
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Figure 5: Normalized invalid ranges within the specified value ranges
under different wind conditions (N: No wind, M: Medium wind, S:
Strong wind).

rameter. Based on our observation, two factors may widen
the invalid ranges: (1) geographical factor and (2) external
disturbance (e.g., strong wind), as described in Section 4.3.3.
RVFUZZER found four cases which can be exploited with
realistic environmental factors.

We performed tests based on existing wind analysis statis-
tics [33, 41, 59] and simulated various wind conditions. The
wind conditions were divided into three categories: no wind,
medium wind (with a horizontal wind component of 5 m/s or
a vertical wind component of 1 m/s), and strong wind (with
a horizontal wind component of 10 m/s or a vertical wind
component of 3 m/s). For each wind condition, the wind gust
was simulated from 0 to 360 degrees with 30-degree incre-
ments. Simulations were also performed where the wind gust
was designed to come in at every 30-degree angle between
the horizontal tests and the vertical tests, such that the tested
wind vectors approximately formed an ellipsoid. These wind
settings enrich our standard test mission (Section 5), which
already reflects geographical factors as it emulates flight paths
with sharp turns for obstacle avoidance.

Fig. 5 presents the impact of three different wind condi-
tions on the four parameters which cause control state de-
viations. RVFUZZER discovered these four input validation

bugs using multi-dimensional mutation over the four param-
eters. We observe that the impact of environmental factors
expands the invalid ranges of those parameters. In particular,
when the wind conditions were not considered, ANGLE_MAX
did not have any invalid range under both one-dimensional
and multi-dimensional mutations. However, with wind condi-
tions, RVFUZZER reveals that this parameter can be exploited
when strong wind is present.

Such an input validation bug is exploitable because a large
angular change is required to alter the direction of the vehicle.
Specifically, if the maximum allowed angle or angular speed
is not large enough (even within the specified value ranges),
the vehicle’s motors cannot generate enough force to change
the direction or resist the wind gusts. As a result, the vehicle
may fail to change its direction at sharp turns or it might drift
in the wind’s direction in the worst case.

We note that the results with environmental factor mutation
may be affected by other factors, such as the control model,
configuration, and physical attributes (e.g., motor power and
the size of the vehicle). For example, if the vehicle is capable
of turning with a larger roll angle, has a smaller size, or has
stronger motors, it may be able to resist wind gusts when
changing its flight direction. Hence, these conditions need to
be tested by RVFUZZER for each specific type of vehicle.

6.3 Case Studies
We present three representative case studies of input valida-
tion bugs. We also discuss how an attacker can exploit these
bugs, and how RVFUZZER can proactively discover them.
The three cases cover different affected controllers, cause dif-
ferent impacts on the RV, and require different components
of RVFUZZER’s testing techniques to detect. Specifically,
the bug discussed in Case I (Section 6.3.1) affects the x and
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1 # d e f i n e WPNAV_WP_SPEED_MIN 100 / / Buggy code 2
2 # d e f i n e WPNAV_WP_SPEED_MIN 20 / / Pa tched code 2
3 . . .
4 void AC_WPNav : : s e t _ s p e e d _ x y ( f l o a t speed_cms ) {
5 − i f ( _wp_speed_cms >=WPNAV_WP_SPEED_MIN) { / / Buggy code 1
6 + i f ( speed_cms >=WPNAV_WP_SPEED_MIN) { / / Pa tched code 1
7 _wp_speed_cms = speed_cms ;
8 _ p o s _ c o n t r o l . s e t _ s p e e d _ x y ( _wp_speed_cms ) ;
9 . . .

Listing 1: Input validation bug case on x, y-axis mission velocity.
The parameter can be dynamically changed by either a mission
speed-change command or a speed parameter-change command.

: Waypoint N
: Mission Flight Route
: Actual Flight Route

N

3

Attacker
GCS

2

2. x, y-axis speed
= 0.2m/s1. x, y-axis speed

= 10m/s

1

Figure 6: Illustration of Case Study I: An RV cannot recover its
normal speed for the segment from Waypoint 2 to Waypoint 3.

y-axes controllers and causes unrecoverable slowdown, but
can be discovered by RVFUZZER using the one-dimensional
mutation technique. Case II (Section 6.3.2) presents a bug
that affects the pitch controller, leads to a crash, and can only
be found via multi-dimensional mutation strategy. Finally,
the bug in Case III (Section 6.3.3) adversely affects the roll
controller and causes significant deviation from the assigned
mission, but can be discovered by mutating an environmental
factor (wind force).

6.3.1 Case Study I: Bug Causing “Unrecoverable Ve-
hicle Slowdown” Discovered by One-Dimensional
Mutation

Attack We consider an RV that is assigned the mission of
express package delivery (Fig. 6). Because of the urgency, the
operator sets the RV’s mission speed to 10 m/s at Waypoint 1.
During the mission, while the RV slows down to make a turn
at Waypoint 2, the attacker sends a seemingly innocent, but
malicious, command to the RV to change its mission speed to
0.2 m/s (the minimum specified speed is 0.2 m/s). After the
turn, however, the operator will not be able to resume the 10
m/s mission speed by issuing speed-change commands. This
attack exploits an input validation bug in ArduPilot, illustrated
in Listing 1.

Root Cause Listing 1 presents the code that runs in the
RV when it receives a new speed-change input (denoted by
speed_cms) during its mission. The specified minimum speed
(in cm/s) is denoted by the WPNAV_WP_SPEED_MIN parameter
(Line 1). We note that the current mission speed (denoted
by _wp_speed_cms) is compared with the minimum mission
speed (Line 5). This means that if (and only if) the current

1

: Waypoint N
: Mission Flight Route
: Actual Flight Route

N

3

Attacker

Manipulate Pitch 
parameter(s)

2

Figure 7: Illustration of Case Study II: The attack launched at Way-
point 2 causes an RV to oscillate due to failing control of the pitch
angle.

mission speed is equal to or higher than the minimum mission
speed, it can be replaced by the new mission speed in the
input command; If the current mission speed is lower than
the minimum mission speed, it cannot be changed. Hence,
this is the bug which can be exploited by the attacker, by
sending a speed-change command with a value lower than
the minimum mission speed while the current mission speed
is higher than the minimum mission speed. This bug has
been patched recently by the developers by correcting the
value of the minimum mission speed (Line 2) and setting the
comparison of the minimum mission speed with the input
speed (Line 6).
Bug Discovery This bug was discovered by RVFUZZER
while performing one-dimensional mutation of the input
mission speed parameter. For input mission values above
1 m/s, the RV successfully changed its current mission speed.
However, if the current mission speed dropped below 1 m/s,
RVFUZZER can no longer change the current mission speed
by setting the input mission speed parameter. The failure
to change the current mission speed led to the incorrect ex-
ecution of the mission, resulting in control state deviation,
simulated and detected by RVFUZZER. Hence, RVFUZZER
reported this deviation-triggering parameter as an input vali-
dation bug, which is confirmed by the related source code in
Listing 1 (as ground truth of our evaluation).

6.3.2 Case Study II: Bug Causing “Oscillating Route
and Crash” Discovered by Multi-Dimensional
Mutation

Attack We consider an RV that is assigned the same mis-
sion as in Case Study I. As shown in Fig. 7, at Waypoint
2 of the mission, the attacker sends a malicious command
to the RV to change one of the four pitch control parame-
ters: MC_PITCH_P, MC_PITCHRATE_P, MC_PITCHRATE_P, and
MC_PITCHRATE_FF. Because of the inter-dependency be-
tween these parameters, such a malicious command, which
looks innocent, can cause the RV to fail to stabilize its pitch
angle, resulting in unrecoverable oscillation and deviation
from its route.
Root Cause The unrecoverable oscillation on the RV’s
route is caused by the failure of its pitch controller to
track the reference state of the pitch. The pitch con-
troller utilizes four inter-dependent parameters: the P con-
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4

1 2

: Waypoint N
: Mission Flight Route
: Actual Flight Route

N

3

Figure 8: Illustration of Case Study III: An RV fails to complete a
simple mission from Waypoint 1 to Waypoint 4 due to the impact of
environmental factors.

trol gain of pitch angle (MC_PITCH_P), the P control gain
of the pitch angular speed (MC_PITCHRATE_P), the maxi-
mum pitch rate (MC_PITCHRATE_MAX), and the feed-forward
pitch rate (MC_PITCHRATE_FF). For example, a high value of
MC_PITCHRATE_FF helps track the reference state of the pitch
when MC_PITCH_P is low. When both MC_PITCHRATE_FF and
MC_PITCH_P have high values, the RV may perform overly
aggressive stabilization operations. In that case, a low value
of the maximum pitch rate (MC_PITCHRATE_MAX) is desirable
to mitigate the impact of such operations.

We point out that such dependencies can be exploited by
an attacker to affect the RV’s operations by corrupting the
value of just one parameter. Let us assume that the RV is
already configured with high values of MC_PITCHRATE_FF
and MC_PITCH_P. If the attacker sets MC_PITCHRATE_MAX to
a high value, the pitch controller will start to respond to the
minuscule difference between the reference state and the
observed state of the pitch angle with extreme sensitivity. As
a result, the RV will not be able to strictly follow its flight path.
We note that this type of bug can only be discovered when the
dependencies between multiple parameters are considered in
the test.

Bug Discovery This bug was found by RVFUZZER while
performing multi-dimensional mutation (Algorithm 2) of the
parameters related to the pitch controller. RVFUZZER mu-
tated the target parameter (MC_PITCHRATE_MAX), while set-
ting high values for MC_PITCH_P and MC_PITCHRATE_FF pa-
rameters. Unlike the one-dimensional mutation, which de-
termined the parameter’s valid range to be between 6.7 and
1800, the multi-dimensional mutation determined that the
valid range of MC_PITCHRATE_MAX is to be between 6.7 and
220.1. RVFUZZER detected and reported the expanded in-
valid range of MC_PITCHRATE_MAX as an input validation bug.

6.3.3 Case Study III: Bug Causing “Diverging Route”
Discovered by Wind Force Mutation

Attack In this case study, we consider an RV assigned a
mission to deliver a food item to a customer via the path

presented in Fig. 8. The RV is required to follow the path
around tall buildings on a windy day with the wind direction
towards the west. Since the item (e.g., soup) might spill if
the RV changes its attitude drastically, the operator tries to
prevent sudden changes in the roll angle by limiting the maxi-
mum angular-change speed (MC_ROLLRATE_MAX) to a small
value. When the vehicle is approaching Waypoint 2, the at-
tacker sends a command to set the maximum tilting angle
(MPC_TILTMAX_AIR) to a low value. We note that the RV is
supposed to make a 120-degree turn to avoid a tall building
at Waypoint 3. However, the RV fails to make the correct
turn at Waypoint 3 and hence cannot reach the destination
(Waypoint 4) after multiple attempts to correct the diverging
path. We note that the value of the maximum tilting/roll angle
parameter is accepted by the control program because it is
within the specified valid range, yet the value causes control
state deviation due to the strong wind condition.

Root Cause There are three causes that induce the vehicle’s
unexpected flight path divergence: (1) the mission route with
sharp turns, (2) the roll controller’s parameter value that is
not responsive enough to change the direction in time, and
(3) the strong wind that expands the invalid ranges of the
roll controller’s parameters. In this case study, the combina-
tion of these three factors disrupts the vehicle’s maneuver
and trajectory, resulting in a failed mission (and a hungry
customer).

Bug Discovery RVFUZZER discovered this bug in PX4 by
mutating the wind condition during the AVC2013 mission
(Section 5) which involves many sharp turns of the vehicle.
As the input values of the roll controller parameters were
mutated under a strong wind condition, RVFUZZER detected
control state deviation between the reference state and the
mission (Fig. 5). Hence, RVFUZZER reported this as an input
validation bug contingent upon the influence of an external
factor (wind).

7 Related Work

Control Semantics-Driven RV Protection There exists a
body of work that leverages control semantics to protect RVs
from attacks during flights and missions [38, 40, 50]. Blue-
Box [40] detects abnormal behaviors of an RV controller by
running a shadow controller in a separate microprocessor that
monitors the correctness of the primary controller, based on
the same control model. CI [38] extracts control-level invari-
ants of an RV controller to detect physical attacks. Similarly,
Heredia et al. [50] propose using a fault detection and isola-
tion model extracted from a target RV controller and enforces
the model to detect anomalies during flights.

Another line of work focuses on deriving finite state models
to detect abnormal controller behaviors [37,61]. Orpheus [37]
automatically derives state transition models using program
analysis for run-time anomaly detection. Bruids [61] relies on
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a manual specification of RV behaviors to derive a behavioral
model to detect run-time anomalies.

Other approaches utilize machine learning techniques to
derive benign behavioral models of an RV controller. Ab-
baspour et al. [31] apply adaptive neural network techniques
to detect fault data injection attacks during flight. Samy et
al. [70] use neural network techniques to detect sensor faults.
Two related efforts [30, 76] leverage a similar approach but
detect both sensor and actuator faults.

Complementing the prior efforts, RVFUZZER leverages
control semantics to proactively find input validation bugs
that may be exploited by RV attackers. Unlike the previous
works that aim to detect abnormal behaviors during flights,
our work focuses on identifying input validation bugs in RV
control programs before flights via off-line RV simulation and
program vetting. Control semantics are leveraged to reduce
the input value mutation space and simulators are adopted to
render the impacts of control parameter and external factor
changes on control states.

Feedback-directed Testing RVFUZZER is inspired by
many existing feedback-driven testing/fuzzing systems for
conventional program testing [14, 17, 19, 34–36, 43, 44, 56, 57,
63,66,71,74,79]. These solutions leverage different mutation
strategies to increase the coverage of testing/fuzzing. Sev-
eral systems [14, 17, 19, 71] mutate input values with varying
granularity (e.g., bit, byte-level) driven by the tested code’s
coverage achieved during each test run, using the code cov-
erage as feedback. Another line of work [63, 74] adopts a
hybrid approach to increase code coverage using both dy-
namic and symbolic execution. Finally, many efforts leverage
taint analysis [36,43,56,57,79] or a combination of taint anal-
ysis and symbolic execution [34, 35, 44, 66] for high testing
coverage. Such approaches mutate inputs with awareness of
the dependencies between program input and logic.

Testing techniques for conventional, non-cyber-physical
programs rely on well-established mechanisms for (1) bug de-
tection and (2) input mutation. Specifically, these testing tech-
niques leverage generic, easy-to-detect symptoms of program
failures (e.g., segmentation faults) as indication of a triggered
bug and mutate program input following information (e.g.,
code coverage) agnostic to domain semantics. Compared with
conventional software testing, RVFUZZER addresses new
problems and opportunities when finding (semantic) input
validation bugs in RV control. Many such bugs do not cause
an immediate, easy-to-detect crash of the control program,
especially when running with an RV simulator. Meanwhile,
control-theoretical properties offer hints to reduce the input
value mutation space.

8 Discussion

Control Parameter Inter-dependencies As revealed by
multi-dimensional mutation, the control parameters may have

dependencies on one another. A specific value of one parame-
ter can increase or decrease the (in)valid value ranges of other
parameters. The ground truth on such inter-parameter depen-
dencies can only be derived from full knowledge about the
underlying control model and the control program implemen-
tation, given the large number of control variables (including
hundreds of parameters), the wide ranges of their values, and
the influence from various environmental factors. As a result,
it is challenging to fully and accurately capture the control
parameter inter-dependencies, with only the binary of a con-
trol program. In this work, we consider the subject control
program binary as a black box and take a pragmatic approach
by only revealing part of such inter-dependencies. A more
generic approach to control parameter dependency derivation
– possibly based on source code and a formal control model –
is left as future work.

Standard Safety Testing and Certification For the safety
of avionics software for airborne systems, there exist standard
safety tests and software certifications such as DO-178B/C [4]
and ISO/IEC 15408 [3]. To the best of our knowledge, how-
ever, there has been no standard safety testing framework cre-
ated for RVs. We believe that RVFUZZER’s post-production,
black-box-based (i.e., without source code) vetting will serve
as a useful complement to standardized safety testing during
RV design and production.

9 Conclusion

Robotic vehicles (RVs) are facing cyber and cyber-physical
attacks launched via various attack vectors. In this paper,
we identify a new, small-footprint attack against RVs, where
an attacker remotely issues a control parameter-change com-
mand with an illegitimate parameter value to disrupt the RV’s
control and mission. Such a value is erroneously accepted by
the RV control program because of an input validation bug
associated with the control parameter. The attack requires
no code injection, control flow hijacking, or sensor spoofing
hence cannot be defeated by existing RV security solutions.
To proactively discover input validation bugs in a control pro-
gram binary, we develop RVFUZZER, a control program test-
ing system that reveals illegitimate-yet-accepted value ranges
of dynamically adjustable control parameters. RVFUZZER
adaptively mutates the input control parameter values to de-
termine the (in)valid value ranges, driven by the detection
of control state deviations in the simulated RV. Furthermore,
it considers the impact of external factors by mutating their
values and presence. RVFUZZER has discovered 89 real in-
put validation bugs in two of the most popular RV control
software suites, with mutation efficiency and automation.
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A Thresholds for Control State Deviation

We present how to determine the threshold values used by
our control instability detector to detect control state devia-
tion (Section 4.2). We use the AVC2013 mission (Section 5)
and thirty other experimental missions in our experiments,
similar to existing work [38]. Specifically, the thresholds are
determined by applying the three-sigma rule [65] on the top
deviation values. For the time window (w) in the IAE for-
mula, we set it to the duration of each mission segment (i.e.,
flight segment between two consecutive waypoints) within a
mission. The list of the threshold values that we use for each
control state is presented in Table 2.

We note that we do not monitor control state deviation in
the second derivative states of the 6DoF (i.e., acceleration of
any of the 6DoF). This is because, if their observed states are
oscillating, they can potentially cause false positives. In fact,
for the same reason, some control programs do not control
acceleration in some 6DoF controllers (e.g., ArduPilot does
not control the angular acceleration of roll, pitch, and yaw).
However, RVFUZZER can detect their control state deviation
via the indirect impacts on the dependent states. The control
state deviation in the second derivative states are propagated
to their integral states (e.g., the first derivative states of the
6DoF), as their controls are intrinsically related.

Table 2: List of threshold values for each control state.

Control Program ArduPilot PX4
Latitude/Longitude

Position 11.62 m 10.08 m

Latitude/Longitude
Velocity 1.23 m/s 4.71 m/s

Altitude Position 2.06 m 3.43 m
Altitude Velocity 0.26 m/s 0.12 m/s

Roll 2.66 deg 1.98 deg
Roll Rate 2.83 deg/s 3.68 deg/s

Pitch 4.64 deg 3.94 deg
Pitch Rate 10.67 deg/s 15.35 deg/s

Yaw 4.13 deg 6.16 deg
Yaw Rate 16.24 deg/s 14.69 deg/s

Table 3: Input validation bugs in ArduPilot and the implications of
the attacks exploiting them (C: Crash; D: Deviation from trajectory;
U: Unstable movement; S: “Stuck” in certain location or speed).

Control Program Parameter Physical Impacts
Module C D U S

Controller

PSC_POSXY_P 3 3
PSC_VELXY_P 3 3 3
PSC_VELXY_I 3 3
PSC_POSZ_P 3
PSC_VELZ_P 3
PSC_ACCZ_P 3 3
PSC_ACCZ_I 3 3 3
PSC_ACCZ_D 3 3 3

ATC_ANG_RLL_P 3
ATC_RAT_RLL_I 3

ATC_RAT_RLL_IMAX 3 3
ATC_RAT_RLL_D 3
ATC_RAT_RLL_P 3 3

ATC_RAT_RLL_FF 3 3
ATC_ANG_PIT_P 3
ATC_RAT_PIT_P 3 3
ATC_RAT_PIT_I 3

ATC_RAT_PIT_IMAX 3
ATC_RAT_PIT_D 3 3
ATC_RAT_PIT_FF 3 3 3
ATC_ANG_YAW_P 3
ATC_SLEW_YAW 3
ATC_RAT_YAW_P 3
ATC_RAT_YAW_I 3

ATC_RAT_YAW_IMAX 3
ATC_RAT_YAW_D 3 3
ATC_RAT_YAW_FF 3 3

Sensor
INS_POS1_Z 3 3
INS_POS2_Z 3 3
INS_POS3_Z 3 3

Mission

WPNAV_SPEED 3
WPNAV_SPEED_UP 3
WPNAV_SPEED_DN 3

WPNAV_ACCEL 3 3
WPNAV_ACCEL_Z 3 3

ANGLE_MAX 3 3

B Physical Impacts Caused by Input Valida-
tion Bug Exploitation

We present more details about the input validation bugs found
by RVFUZZER and the implications of the attacks that exploit
them in Tables 3 (for ArduPilot) and Table 4 (for PX4). The
columns of each table shows: (1) the control program modules
where the bugs belong (Control Program Module), (2) the
vulnerable control parameters (Parameter, i.e., with erroneous
range specification or range implementation), and (3) the
possible physical impacts caused by the attacks exploiting the
bugs (Physical Impacts). While the two tables list a total of 63
parameters, some of the parameters are associated with both
range implementation and specification bugs. This explains
why the total number of bugs (89) is higher than the number
of vulnerable parameters.

Depending on the specific (malicious) value of the control
parameter, the impact of an attack may vary. Here the possible
impacts are categorized into four types as shown in the four
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sub-columns of the “Physical Impacts” column: “C” – vehicle
crash; “D” – deviation from trajectory; “U” – unstable vehicle
movement; and “S” – vehicle getting “stuck” at a certain
location or speed. All of these impacts are non-transient and
cannot be recovered by the controllers.

Table 4: Input validation bugs in PX4 and implications of attacks
exploiting them.

Control Program Parameter Physical Impacts
Module C D U S

Controller

MC_TPA_RATE_P 3 3
MC_PITCHRATE_FF 3 3 3

MC_PITCHRATE_MAX 3 3
MC_PITCHRATE_P 3 3 3

MC_PITCH_P 3 3 3 3
MC_ROLLRATE_FF 3 3 3

MC_ROLLRATE_MAX 3 3
MC_ROLLRATE_P 3 3 3

MC_ROLL_P 3 3 3
MC_YAWRATE_FF 3 3
MC_YAWRATE_P 3 3

MC_YAW_P 3 3
MIS_YAW_ERR 3

MPC_TILTMAX_AIR 3 3
MPC_THR_MAX 3 3 3
MPC_THR_MIN 3 3 3

MPC_XY_P 3 3 3
MPC_Z_P 3 3 3

MPC_XY_VEL_P 3 3 3 3
MPC_Z_VEL_P 3 3 3

Mission

MC_YAWRAUTO_MAX 3 3
MPC_XY_VEL_MAX 3 3

MPC_XY_CRUISE 3
MPC_Z_VEL_MAX_DN 3 3
MPC_Z_VEL_MAX_UP 3 3 3

MPC_TKO_SPEED 3
MPC_LAND_SPEED 3
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