
SAQL: A Stream-based Query System for Real-Time 
Abnormal System Behavior Detection

Peng Gao1, Xusheng Xiao2, Ding Li3, Zhichun Li3, Kangkook Jee3,
Zhenyu Wu3, Chung Hwan Kim3, Sanjeev R. Kulkarni1, Prateek Mittal1

1Princeton University
2Case Western Reserve University

3NEC Laboratories America, Inc.



The Equifax Data Breach



Impact of Advanced Persistent Threat (APT) Attack

• Advanced: sophisticated techniques, e.g.,
exploiting multiple vulnerabilities
• Persistent: adversaries are continuously
monitoring and stealing data from the target
• Threat: strong economical or political motives



APT Attack: Case Study

• c1 Initial Compromise: Attacker sends a crafted e-mail to the victim, which contains an Excel file with a
malicious macro embedded

• c2 Malware Infection: Victim opens the file and runs the macro, which downloads and executes a malware
to open a backdoor

• c3 Privilege Escalation: Attacker enters the victim’s machine through the backdoor and runs the database
cracking tool to obtain database credentials

• c4 Penetration into Database Server: Attacker penetrates into the database server and drops another
malware to open another backdoor

• c5 Data Exfiltration: Attacker dumps the database content and sends the dump back to his host



APT Attack: Case Study

• Multiple steps exploiting different types of vulnerabilities in the system,
exhibiting different abnormal behaviors
ØKnown malicious behaviors, e.g., “cmd.exe” starts “gsecdump.exe” (c3)
ØAbnormal data transfers, e.g., “sqlservr.exe” transfers large data to external IP, causing large
network spikes (c5)

ØAbnormal process creations, e.g., “excel.exe” starts “java.exe” (c2)



Ubiquitous System Monitoring
• Recording system behaviors from kernel 

ØUnified structure of logs: not bound to applications

• System activities w.r.t. system resources
ØSystem resources (system entities): processes, files, network connections
ØSystem activities (system events): file events, process events, network events

§ Format: <subject, operation, object>, e.g., proc p1 read file f1

• Enabling timely anomaly detection via querying the real-time stream of system 
monitoring data
ØContinuous queries

Kernel



• Rule-based anomaly: behavioral rules of system activities and their relationships
• Time-Series anomaly: states definition and history states comparison
• Invariant-based anomaly: invariant definition, training, and violation checking
• Outlier-based anomaly: peer states comparison

Challenge 1: Attack Behavior Specification



• System monitoring produces huge amount of system logs per day
Ø ~50 GB for 100 hosts per day; throughput ~2500 system events/s (in typical computer 

science research lab environment)

• Executing multiple concurrent queries incurs considerable overhead

…

Challenge 2: Timely “Big Data” Security Analysis

System Event Stream



SAQL System

• Novel stream query system for abnormal system behavior detection
Ø Build on top of existing mature tools (~50,000 lines of Java code)

§ System-level monitoring tools: auditd, ETW, Dtrace
§ Event stream management: Siddhi



Data Collection
• Data collection agent: system calls as a sequence of system events

ØWindows: Event Tracing for Windows (ETW)
ØLinux: Audit Framework (auditd)
ØMac: DTrace

• Collect critical attributes for security analysis



Rule-based Anomaly: Single-Event

• Event pattern: <subject, operation, object>, attribute constraints, event ID
• Return attributes



Rule-based Anomaly: Multievent

• Global constraints: e.g., agent ID
• Event patterns: <subject, operation, object>, attribute constraints, event ID
• Temporal relationships: enforce the event order
• Attribute relationships: e.g., two events linked by the same entity
• Syntax shortcuts: e.g., context-aware attribute inference

p1.exe_name, p2.exe_name, p3.exe_name, f1.name, p4.exe_name, i1.dst_ip

exe_name = “%cmd.exe”

name = “%backup1.dmp”



Time-Series Anomaly

• Sliding windows
• Aggregation states
• History states access
• Time-series anomaly 

models (e.g., SMA3)

Existing systems lack the
explicit support for
stateful computation in
sliding windows



Invariant-based Anomaly

• Invariants definition
• Invariants update
• Offline/online training
• Invariant-based anomaly 

models



Outlier-based Anomaly

• Cluster definition
• Distance metric
• Clustering method 
• Outlier-based anomaly 

models



SAQL Execution Engine

• Multievent pattern matching: match the stream against the event patterns
• Stateful computation: compute and maintain states over sliding windows
• Alert condition checking: check conditions for triggering alerts
• Return and filters: return desired attributes of qualified events



Master-Dependent-Query Scheme
• Challenge: executing multiple concurrent queries incurs considerable overhead
• Key insight: share intermediate execution results among queries (two levels for

now: event pattern matching, stateful computation)
ØPartition concurrent queries into master-dependent groups
ØOnly master query has direct access to the stream

Master query

Dependent query 1 Dependent query 2



• Deploy in NEC Labs of 150 hosts (1.1 TB data; 3.3 billion events; throughput 3750 events/s)

• Deployed server has 12 cores and 128GB of RAM

• 17 queries
Ø APT attack: apt-c1, apt-c2, apt-c3, apt-c4, apt-c5, apt-c2-invariant, apt-c5-timeseries, apt-c5-outlier
Ø SQL injection attack: sql-injection
Ø Bash shellshock command injection attack: shellshock
Ø Suspicious system behaviors: dropbox, command-history, password, login-log, sshkey, usb, ipfreq

Case Study: Four Major Types of Attacks



Case Study: Execution Statistics

Low detection latency: <2s



Pressure Test

High system throughput: 110,000 events/s; supporting ~4000 hosts 



Performance of Concurrent Query Execution
• 64 micro-benchmark queries

ØFour attack categories:

§ Sensitive file access: /etc/password, .ssh/id_rsa, .bash_history, /var/log/wtmp
§ Browsers access files: chrome, firefox, iexplore, microsoftedge
§ Processes access networks: dropbox, sqlservr, apache, outlook
§ Processes spawn: /bin/bash, /usr/bin/ssh, cmd.exe, java

ØFour evaluation categories for query variations:

§ Event attribute: 1 attribute -> 4 attributes

§ Sliding window: 1 minute -> 4 minute

§ Agent ID: 1 agent -> 4 agents

§ State aggregation: 1 aggregation type -> 4 aggregation types

Ø4 queries for each joint category, 64 = 4 * 4 * 4



Performance of Concurrent Query Execution
• Example micro-benchmark query for joint category “sensitive file accesses & state

aggregation”

• Memory consumption (MB) w.r.t. number of concurrent queries

30% average memory saving
for all 64 categories



Alert Detection and Investigation
• Historical data is required for alert investigation

• AIQL (Attack Investigation Query Language) System
(USENIX ATC’18)
ØData stored in relational databases with efficient indexing
ØCompatible query language
ØLeverage domain specifics to speedup the search of
complex system event patterns

ØProject website: https://sites.google.com/site/aiqlsystem/

• Together, SAQL and AIQL work seamlessly for
defending against APT attacks

https://sites.google.com/site/aiqlsystem/


Conclusion
• SAQL (Stream-based Anomaly Query Language) System : enabling timely 

anomaly detection via querying the real-time stream of system monitoring data
ØConcisely express four types of anomaly models
ØEfficient stream management and concurrent query execution based on domain specifics
ØProject website: https://sites.google.com/site/saqlsystem/

Q & A
Thank you!

https://sites.google.com/site/saqlsystem/

